Nuprl Lemma : int-triangle-inequality

[a,b:ℤ].  (|a b| ≤ (|a| |b|))


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] le: A ≤ B add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot intformand_wf itermMinus_wf intformless_wf itermConstant_wf int_formula_prop_and_lemma int_term_value_minus_lemma int_formula_prop_less_lemma int_term_value_constant_lemma less_than'_wf absval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin addEquality hypothesisEquality hypothesis minusEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp instantiate cumulativity independent_pairEquality applyEquality axiomEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (|a  +  b|  \mleq{}  (|a|  +  |b|))



Date html generated: 2017_04_14-AM-09_13_14
Last ObjectModification: 2017_02_27-PM-03_50_18

Theory : int_2


Home Index