Nuprl Lemma : rnonzero-lemma1

[x:ℝ]. ∀[n:ℕ+].  ∀m:ℕ+((n ≤ m)  (m ≤ (n |x m|))) supposing 5 ≤ |x n|


Proof




Definitions occuring in Statement :  real: absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q real: nat_plus: + subtype_rel: A ⊆B nat: sq_stable: SqStable(P) regular-int-seq: k-regular-seq(f) squash: T prop: le: A ≤ B and: P ∧ Q not: ¬A false: False top: Top ge: i ≥  guard: {T} subtract: m true: True less_than': less_than'(a;b) iff: ⇐⇒ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rev_implies:  Q
Lemmas referenced :  sq_stable__le absval_wf nat_plus_wf nat_wf int-triangle-inequality subtract_wf le_wf less_than'_wf real_wf le_functionality le_weakening add_functionality_wrt_le mul-distributes mul-associates minus-one-mul mul-swap add-swap add-commutes add-mul-special zero-mul add-zero false_wf squash_wf true_wf absval_mul add_functionality_wrt_eq iff_weakening_equal multiply_functionality_wrt_le equal_wf nat_plus_subtype_nat nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermMultiply_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf absval_pos
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesisEquality hypothesis multiplyEquality applyEquality functionExtensionality lambdaEquality sqequalRule independent_functionElimination dependent_functionElimination because_Cache imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality voidElimination addEquality voidEquality minusEquality independent_isectElimination dependent_set_memberEquality independent_pairFormation intEquality universeEquality applyLambdaEquality unionElimination dependent_pairFormation int_eqEquality computeAll functionEquality

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    \mforall{}m:\mBbbN{}\msupplus{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (m  \mleq{}  (n  *  |x  m|)))  supposing  5  \mleq{}  |x  n|



Date html generated: 2017_10_02-PM-07_16_09
Last ObjectModification: 2017_07_28-AM-07_20_52

Theory : reals


Home Index