Nuprl Lemma : reg-seq-adjust_wf
∀[n:ℕ+]. ∀[x:ℝ].  reg-seq-adjust(n;x) ∈ {f:ℕ+ ⟶ ℤ| if (n =z 1) then 1 else 4 fi -regular-seq(f)}  supposing ∀i:ℕ+. (i <\000C n ⇒ (|x i| ≤ 4))
Proof
Definitions occuring in Statement : 
reg-seq-adjust: reg-seq-adjust(n;x), 
real: ℝ, 
regular-int-seq: k-regular-seq(f), 
absval: |i|, 
nat_plus: ℕ+, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
real: ℝ, 
reg-seq-adjust: reg-seq-adjust(n;x), 
nat_plus: ℕ+, 
less_than: a < b, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
decidable: Dec(P), 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
absval: |i|, 
subtract: n - m
Lemmas referenced : 
top_wf, 
less_than_wf, 
nat_plus_wf, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
regular-int-seq_wf, 
ifthenelse_wf, 
all_wf, 
le_wf, 
absval_wf, 
nat_wf, 
real_wf, 
lt_int_wf, 
assert_of_lt_int, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bdd-diff-regular-int-seq, 
false_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
and_wf, 
le_functionality, 
le_weakening, 
int-triangle-inequality, 
add_functionality_wrt_le, 
squash_wf, 
true_wf, 
minus-one-mul, 
add-mul-special, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
lessCases, 
independent_pairFormation, 
isectElimination, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
extract_by_obid, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
independent_functionElimination, 
applyEquality, 
unionElimination, 
equalityElimination, 
intEquality, 
independent_isectElimination, 
impliesFunctionality, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
functionExtensionality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
minusEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].
    reg-seq-adjust(n;x)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  if  (n  =\msubz{}  1)  then  1  else  4  fi  -regular-seq(f)\}    supposing  \mforall{}i:\mBbbN{}\msupplus{}.  \000C(i  <  n  {}\mRightarrow{}  (|x  i|  \mleq{}  4))
Date html generated:
2019_10_16-PM-03_07_18
Last ObjectModification:
2018_08_20-PM-09_45_00
Theory : reals
Home
Index