Nuprl Lemma : reg-seq-adjust_wf

[n:ℕ+]. ∀[x:ℝ].  reg-seq-adjust(n;x) ∈ {f:ℕ+ ⟶ ℤif (n =z 1) then else fi -regular-seq(f)}  supposing ∀i:ℕ+(i <\000C  (|x i| ≤ 4))


Proof




Definitions occuring in Statement :  reg-seq-adjust: reg-seq-adjust(n;x) real: regular-int-seq: k-regular-seq(f) absval: |i| nat_plus: + ifthenelse: if then else fi  eq_int: (i =z j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a real: reg-seq-adjust: reg-seq-adjust(n;x) nat_plus: + less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  absval: |i| subtract: m
Lemmas referenced :  top_wf less_than_wf nat_plus_wf eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf regular-int-seq_wf ifthenelse_wf all_wf le_wf absval_wf nat_wf real_wf lt_int_wf assert_of_lt_int nat_plus_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bdd-diff-regular-int-seq false_wf subtract_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma and_wf le_functionality le_weakening int-triangle-inequality add_functionality_wrt_le squash_wf true_wf minus-one-mul add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality sqequalRule lambdaEquality hypothesisEquality hypothesis lessCases independent_pairFormation isectElimination baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality extract_by_obid isect_memberEquality because_Cache voidElimination voidEquality lambdaFormation imageElimination productElimination independent_functionElimination applyEquality unionElimination equalityElimination intEquality independent_isectElimination impliesFunctionality dependent_functionElimination axiomEquality functionEquality functionExtensionality approximateComputation dependent_pairFormation int_eqEquality promote_hyp instantiate cumulativity hyp_replacement applyLambdaEquality addEquality minusEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].
    reg-seq-adjust(n;x)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  if  (n  =\msubz{}  1)  then  1  else  4  fi  -regular-seq(f)\}    supposing  \mforall{}i:\mBbbN{}\msupplus{}.  \000C(i  <  n  {}\mRightarrow{}  (|x  i|  \mleq{}  4))



Date html generated: 2019_10_16-PM-03_07_18
Last ObjectModification: 2018_08_20-PM-09_45_00

Theory : reals


Home Index