Nuprl Lemma : bdd-diff-regular-int-seq

[k,b:ℕ]. ∀[f:{f:ℕ+ ⟶ ℤk-regular-seq(f)} ]. ∀[g:ℕ+ ⟶ ℤ].
  b-regular-seq(g) supposing ∀n:ℕ+(|(f n) n| ≤ (2 b))


Proof




Definitions occuring in Statement :  regular-int-seq: k-regular-seq(f) absval: |i| nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a regular-int-seq: k-regular-seq(f) all: x:A. B[x] nat_plus: + subtype_rel: A ⊆B nat: sq_stable: SqStable(P) implies:  Q squash: T le: A ≤ B and: P ∧ Q not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) guard: {T} subtract: m true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  absval_pos int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_add_lemma itermConstant_wf itermMultiply_wf itermAdd_wf nat_plus_subtype_nat absval-diff-symmetry multiply_functionality_wrt_le absval_mul iff_weakening_equal left_mul_subtract_distrib add_functionality_wrt_eq true_wf squash_wf zero-add zero-mul add-mul-special add-commutes add-swap minus-one-mul add-associates int-triangle-inequality add_functionality_wrt_le le_weakening le_functionality int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt less_than_wf decidable__le nat_properties nat_plus_properties regular-int-seq_wf set_wf le_wf all_wf nat_wf less_than'_wf nat_plus_wf subtract_wf absval_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation setElimination thin rename lemma_by_obid sqequalHypSubstitution isectElimination multiplyEquality hypothesisEquality applyEquality hypothesis because_Cache sqequalRule natural_numberEquality addEquality independent_functionElimination imageMemberEquality baseClosed imageElimination lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality intEquality voidElimination voidEquality minusEquality dependent_set_memberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality computeAll universeEquality

Latex:
\mforall{}[k,b:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  k-regular-seq(f)\}  ].  \mforall{}[g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    k  +  b-regular-seq(g)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (|(f  n)  -  g  n|  \mleq{}  (2  *  b))



Date html generated: 2016_05_18-AM-06_46_41
Last ObjectModification: 2016_01_17-AM-01_46_16

Theory : reals


Home Index