Nuprl Lemma : bdd-diff-regular-int-seq
∀[k,b:ℕ]. ∀[f:{f:ℕ+ ⟶ ℤ| k-regular-seq(f)} ]. ∀[g:ℕ+ ⟶ ℤ].
  k + b-regular-seq(g) supposing ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
Proof
Definitions occuring in Statement : 
regular-int-seq: k-regular-seq(f)
, 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
subtract: n - m
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
absval_pos, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
nat_plus_subtype_nat, 
absval-diff-symmetry, 
multiply_functionality_wrt_le, 
absval_mul, 
iff_weakening_equal, 
left_mul_subtract_distrib, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
zero-add, 
zero-mul, 
add-mul-special, 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
int-triangle-inequality, 
add_functionality_wrt_le, 
le_weakening, 
le_functionality, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
less_than_wf, 
decidable__le, 
nat_properties, 
nat_plus_properties, 
regular-int-seq_wf, 
set_wf, 
le_wf, 
all_wf, 
nat_wf, 
less_than'_wf, 
nat_plus_wf, 
subtract_wf, 
absval_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
multiplyEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
addEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
dependent_set_memberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
universeEquality
Latex:
\mforall{}[k,b:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  k-regular-seq(f)\}  ].  \mforall{}[g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    k  +  b-regular-seq(g)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (|(f  n)  -  g  n|  \mleq{}  (2  *  b))
Date html generated:
2016_05_18-AM-06_46_41
Last ObjectModification:
2016_01_17-AM-01_46_16
Theory : reals
Home
Index