Nuprl Lemma : nat_plus_inc_int_nzero
ℕ+ ⊆r ℤ-o
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
Lemmas referenced : 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal_wf, 
equal-wf-base, 
int_subtype_base, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
because_Cache, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
baseClosed
Latex:
\mBbbN{}\msupplus{}  \msubseteq{}r  \mBbbZ{}\msupminus{}\msupzero{}
Date html generated:
2019_06_20-AM-11_33_34
Last ObjectModification:
2018_09_17-PM-05_37_06
Theory : int_1
Home
Index