Nuprl Lemma : nat_plus_inc_int_nzero

+ ⊆r ℤ-o


Proof




Definitions occuring in Statement :  int_nzero: -o nat_plus: + subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T nat_plus: + int_nzero: -o uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T}
Lemmas referenced :  subtype_rel_sets less_than_wf nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf equal-wf-base int_subtype_base nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut hypothesisEquality applyEquality thin sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality because_Cache natural_numberEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation dependent_functionElimination independent_functionElimination voidElimination baseClosed

Latex:
\mBbbN{}\msupplus{}  \msubseteq{}r  \mBbbZ{}\msupminus{}\msupzero{}



Date html generated: 2019_06_20-AM-11_33_34
Last ObjectModification: 2018_09_17-PM-05_37_06

Theory : int_1


Home Index