Nuprl Lemma : rmul-rinv
∀[x:ℝ]. (x * rinv(x)) = r1 supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rinv: rinv(x), 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ
Lemmas referenced : 
rmul-rinv1, 
rnonzero-iff, 
req_witness, 
rmul_wf, 
rinv_wf2, 
int-to-real_wf, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  (x  *  rinv(x))  =  r1  supposing  x  \mneq{}  r0
Date html generated:
2016_05_18-AM-07_11_05
Last ObjectModification:
2015_12_28-AM-00_39_38
Theory : reals
Home
Index