Nuprl Lemma : rmul-rinv

[x:ℝ]. (x rinv(x)) r1 supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  rmul-rinv1 rnonzero-iff req_witness rmul_wf rinv_wf2 int-to-real_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination dependent_functionElimination productElimination hypothesis natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  (x  *  rinv(x))  =  r1  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_11_05
Last ObjectModification: 2015_12_28-AM-00_39_38

Theory : reals


Home Index