Nuprl Lemma : implies-real-vec-dist-rleq

[n:ℕ]. ∀[x,y:ℝ^n]. ∀[c:ℝ].  ((∀i:ℕn. (|(x i) i| ≤ c))  (d(x;y) ≤ (rsqrt(r(n)) c)))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rsqrt: rsqrt(x) rleq: x ≤ y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q real-vec-dist: d(x;y) all: x:A. B[x] real-vec-sub: Y rev_uimplies: rev_uimplies(P;Q) real-vec: ^n uimplies: supposing a rge: x ≥ y guard: {T} nat: prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  implies-real-vec-norm-rleq real-vec-sub_wf rleq_functionality_wrt_implies rabs_wf rsub_wf rleq_weakening_equal rleq_weakening int_seg_wf rleq_wf le_witness_for_triv real_wf real-vec_wf istype-nat itermSubtract_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null int-to-real_wf istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule applyEquality because_Cache independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry functionIsType universeIsType natural_numberEquality setElimination rename lambdaEquality_alt productElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies approximateComputation int_eqEquality voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    ((\mforall{}i:\mBbbN{}n.  (|(x  i)  -  y  i|  \mleq{}  c))  {}\mRightarrow{}  (d(x;y)  \mleq{}  (rsqrt(r(n))  *  c)))



Date html generated: 2019_10_30-AM-08_30_01
Last ObjectModification: 2019_06_18-PM-01_55_58

Theory : reals


Home Index