Nuprl Lemma : implies-real-vec-dist-rleq
∀[n:ℕ]. ∀[x,y:ℝ^n]. ∀[c:ℝ].  ((∀i:ℕn. (|(x i) - y i| ≤ c)) 
⇒ (d(x;y) ≤ (rsqrt(r(n)) * c)))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
real-vec-dist: d(x;y)
, 
all: ∀x:A. B[x]
, 
real-vec-sub: X - Y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real-vec: ℝ^n
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
, 
nat: ℕ
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
implies-real-vec-norm-rleq, 
real-vec-sub_wf, 
rleq_functionality_wrt_implies, 
rabs_wf, 
rsub_wf, 
rleq_weakening_equal, 
rleq_weakening, 
int_seg_wf, 
rleq_wf, 
le_witness_for_triv, 
real_wf, 
real-vec_wf, 
istype-nat, 
itermSubtract_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
productElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
approximateComputation, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    ((\mforall{}i:\mBbbN{}n.  (|(x  i)  -  y  i|  \mleq{}  c))  {}\mRightarrow{}  (d(x;y)  \mleq{}  (rsqrt(r(n))  *  c)))
Date html generated:
2019_10_30-AM-08_30_01
Last ObjectModification:
2019_06_18-PM-01_55_58
Theory : reals
Home
Index