Nuprl Lemma : real-vec-dist-same-zero

[n:ℕ]. ∀[x:ℝ^n].  (d(x;x) r0)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a
Lemmas referenced :  req_witness real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec_wf nat_wf real-vec-dist-identity req-vec_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule independent_functionElimination isect_memberEquality because_Cache productElimination independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (d(x;x)  =  r0)



Date html generated: 2016_10_26-AM-10_25_53
Last ObjectModification: 2016_09_29-PM-06_34_17

Theory : reals


Home Index