Nuprl Lemma : real-vec-dist-identity
∀[n:ℕ]. ∀[x,y:ℝ^n].  uiff(d(x;y) = r0;req-vec(n;x;y))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
req-vec: req-vec(n;x;y), 
all: ∀x:A. B[x], 
real-vec: ℝ^n, 
implies: P ⇒ Q, 
nat: ℕ, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
real-vec-dist: d(x;y), 
real-vec-norm: ||x||, 
iff: P ⇐⇒ Q, 
dot-product: x⋅y, 
not: ¬A, 
rneq: x ≠ y, 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
le: A ≤ B, 
less_than: a < b, 
so_apply: x[s], 
real: ℝ, 
sq_stable: SqStable(P), 
squash: ↓T, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m], 
rge: x ≥ y, 
real-vec-sub: X - Y, 
rsub: x - y, 
real-vec-mul: a*X, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
int_seg_wf, 
req_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
rsqrt-is-zero, 
dot-product-nonneg, 
real-vec-sub_wf, 
dot-product_wf, 
equal_wf, 
not-rneq, 
rneq_wf, 
rmul-is-positive, 
rless_wf, 
rsum-split, 
subtract_wf, 
rmul_wf, 
subtract-add-cancel, 
nat_plus_properties, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
sq_stable__less_than, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rsum_wf, 
radd_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
req_functionality, 
req_weakening, 
rsum_nonneg, 
square-nonneg, 
le_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rsum-split-last, 
rless_functionality, 
radd_functionality, 
trivial-rless-radd, 
rless_transitivity1, 
rleq_weakening, 
rless_irreflexivity, 
radd-preserves-req, 
rsub_wf, 
rminus_wf, 
uiff_transitivity, 
radd-ac, 
radd_comm, 
radd-rminus-both, 
radd-zero-both, 
real-vec-norm_functionality, 
real-vec-mul_wf, 
rsub_functionality, 
rmul_functionality, 
rmul-zero-both, 
real-vec-norm_wf, 
rabs_wf, 
req_transitivity, 
real-vec-norm-mul, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
unionElimination, 
inrFormation, 
productEquality, 
inlFormation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(d(x;y)  =  r0;req-vec(n;x;y))
Date html generated:
2017_10_03-AM-10_55_45
Last ObjectModification:
2017_07_28-AM-08_21_14
Theory : reals
Home
Index