Nuprl Lemma : rsum-split-last

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  Σ{x[i] n≤i≤m} {x[i] n≤i≤1} x[m]) supposing n ≤ m


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y radd: b real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtract: m uiff: uiff(P;Q) top: Top sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) itermAdd: left (+) right itermVar: vvar itermSubtract: left (-) right int_term_ind: int_term_ind real_term_value: real_term_value(f;t) req_int_terms: t1 ≡ t2 itermConstant: "const"

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m  -  1\}  +  x[m])  supposing  n  \mleq{}  m



Date html generated: 2020_05_20-AM-11_11_33
Last ObjectModification: 2019_12_14-PM-00_56_59

Theory : reals


Home Index