Nuprl Lemma : rsum_nonneg
∀[n,m:ℤ]. ∀[y:{n..m + 1-} ⟶ ℝ].  r0 ≤ Σ{y[k] | n≤k≤m} supposing r0 ≤ y[k] for k ∈ [n,m]
Proof
Definitions occuring in Statement : 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rsum_wf, 
int_seg_wf, 
int-to-real_wf, 
real_wf, 
nat_plus_wf, 
pointwise-rleq_wf, 
req_weakening, 
rsum_functionality_wrt_rleq, 
req_functionality, 
rsum-zero, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    r0  \mleq{}  \mSigma{}\{y[k]  |  n\mleq{}k\mleq{}m\}  supposing  r0  \mleq{}  y[k]  for  k  \mmember{}  [n,m]
Date html generated:
2016_05_18-AM-07_47_58
Last ObjectModification:
2015_12_28-AM-01_04_02
Theory : reals
Home
Index