Nuprl Lemma : rsum_nonneg

[n,m:ℤ]. ∀[y:{n..m 1-} ⟶ ℝ].  r0 ≤ Σ{y[k] n≤k≤m} supposing r0 ≤ y[k] for k ∈ [n,m]


Proof




Definitions occuring in Statement :  pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B real: prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf rsum_wf int_seg_wf int-to-real_wf real_wf nat_plus_wf pointwise-rleq_wf req_weakening rsum_functionality_wrt_rleq req_functionality rsum-zero rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality addEquality natural_numberEquality hypothesis setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality intEquality voidElimination independent_isectElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    r0  \mleq{}  \mSigma{}\{y[k]  |  n\mleq{}k\mleq{}m\}  supposing  r0  \mleq{}  y[k]  for  k  \mmember{}  [n,m]



Date html generated: 2016_05_18-AM-07_47_58
Last ObjectModification: 2015_12_28-AM-01_04_02

Theory : reals


Home Index