Nuprl Lemma : rsum-zero

[n,m:ℤ].  {r0 n≤k≤m} r0)


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q and: P ∧ Q uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsum_wf int-to-real_wf int_seg_wf rmul_wf rmul-zero-both req_functionality rsum-constant req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality natural_numberEquality hypothesis addEquality independent_functionElimination intEquality isect_memberEquality because_Cache productElimination independent_isectElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].    (\mSigma{}\{r0  |  n\mleq{}k\mleq{}m\}  =  r0)



Date html generated: 2016_05_18-AM-07_47_37
Last ObjectModification: 2015_12_28-AM-01_03_23

Theory : reals


Home Index