Nuprl Lemma : rsum-zero
∀[n,m:ℤ].  (Σ{r0 | n≤k≤m} = r0)
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsum_wf, 
int-to-real_wf, 
int_seg_wf, 
rmul_wf, 
rmul-zero-both, 
req_functionality, 
rsum-constant, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesis, 
addEquality, 
independent_functionElimination, 
intEquality, 
isect_memberEquality, 
because_Cache, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[n,m:\mBbbZ{}].    (\mSigma{}\{r0  |  n\mleq{}k\mleq{}m\}  =  r0)
Date html generated:
2016_05_18-AM-07_47_37
Last ObjectModification:
2015_12_28-AM-01_03_23
Theory : reals
Home
Index