Nuprl Lemma : rsum-constant

[n,m:ℤ]. ∀[a:ℝ].  {a n≤k≤m} (a * Σ{r1 n≤k≤m}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] prop:
Lemmas referenced :  req_witness rsum_wf int_seg_wf rmul_wf int-to-real_wf real_wf le_wf req_weakening req_functionality req_inversion rsum_linearity2 rsum_functionality2 rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality addEquality natural_numberEquality hypothesis independent_functionElimination isect_memberEquality because_Cache intEquality independent_isectElimination productElimination lambdaFormation

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (\mSigma{}\{a  |  n\mleq{}k\mleq{}m\}  =  (a  *  \mSigma{}\{r1  |  n\mleq{}k\mleq{}m\}))



Date html generated: 2016_05_18-AM-07_47_21
Last ObjectModification: 2015_12_28-AM-01_03_17

Theory : reals


Home Index