Nuprl Lemma : real-vec-dist-nonneg

[n:ℕ]. ∀[x,y:ℝ^n].  (r0 ≤ d(x;y))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y int-to-real: r(n) nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B real:
Lemmas referenced :  real-vec-dist_wf set_wf real_wf rleq_wf int-to-real_wf sq_stable__rleq equal_wf less_than'_wf rsub_wf nat_plus_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality natural_numberEquality lambdaFormation setElimination rename independent_functionElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setEquality minusEquality axiomEquality isect_memberEquality voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (r0  \mleq{}  d(x;y))



Date html generated: 2016_10_26-AM-10_24_48
Last ObjectModification: 2016_09_25-AM-00_57_49

Theory : reals


Home Index