Nuprl Lemma : real-vec-dist-nonneg
∀[n:ℕ]. ∀[x,y:ℝ^n].  (r0 ≤ d(x;y))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
real-vec: ℝ^n, 
rleq: x ≤ y, 
int-to-real: r(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ
Lemmas referenced : 
real-vec-dist_wf, 
set_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
sq_stable__rleq, 
equal_wf, 
less_than'_wf, 
rsub_wf, 
nat_plus_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
lambdaFormation, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setEquality, 
minusEquality, 
axiomEquality, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (r0  \mleq{}  d(x;y))
Date html generated:
2016_10_26-AM-10_24_48
Last ObjectModification:
2016_09_25-AM-00_57_49
Theory : reals
Home
Index