Nuprl Lemma : rmul_preserves_rless

x,y,z:ℝ.  ((r0 < y)  (x < ⇐⇒ (x y) < (z y)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q rneq: x ≠ y guard: {T} or: P ∨ Q uimplies: supposing a
Lemmas referenced :  rless_wf rmul_wf int-to-real_wf real_wf rmul_functionality_wrt_rless rinv_wf2 rinv-positive rless_functionality req_transitivity req_inversion rmul-assoc rmul_functionality req_weakening rmul-rinv rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination independent_functionElimination sqequalRule inrFormation because_Cache independent_isectElimination productElimination

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((r0  <  y)  {}\mRightarrow{}  (x  <  z  \mLeftarrow{}{}\mRightarrow{}  (x  *  y)  <  (z  *  y)))



Date html generated: 2016_05_18-AM-07_12_23
Last ObjectModification: 2015_12_28-AM-00_40_30

Theory : reals


Home Index