Nuprl Lemma : rmul-rinv3

[x,a:ℝ].  (x rinv(x) a) supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf rinv_wf2 rneq_wf int-to-real_wf real_wf rmul-identity1 req_functionality req_transitivity req_inversion rmul_assoc rmul_functionality rmul-rinv req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination

Latex:
\mforall{}[x,a:\mBbbR{}].    (x  *  rinv(x)  *  a)  =  a  supposing  x  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_27_16
Last ObjectModification: 2017_04_04-PM-08_49_38

Theory : reals


Home Index