Nuprl Lemma : real-vec-dist-dim1

[x,y:ℝ^1].  (d(x;y) |(x 0) 0|)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rabs: |x| rsub: y req: y uall: [x:A]. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-dist: d(x;y) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: real-vec-sub: Y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness real-vec-dist_wf istype-void istype-le rabs_wf rsub_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than real-vec_wf real-vec-norm_wf real-vec-sub_wf subtype_rel_self int_seg_wf real_wf req_weakening req_functionality real-vec-norm-dim1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule lambdaFormation_alt voidElimination hypothesis hypothesisEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt isect_memberEquality_alt universeIsType productIsType because_Cache isectIsTypeImplies functionEquality productElimination

Latex:
\mforall{}[x,y:\mBbbR{}\^{}1].    (d(x;y)  =  |(x  0)  -  y  0|)



Date html generated: 2019_10_30-AM-08_28_38
Last ObjectModification: 2019_06_25-PM-03_23_31

Theory : reals


Home Index