Nuprl Lemma : real-vec-dist-dim1
∀[x,y:ℝ^1].  (d(x;y) = |(x 0) - y 0|)
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-dist: d(x;y)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
real-vec-sub: X - Y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
real-vec-dist_wf, 
istype-void, 
istype-le, 
rabs_wf, 
rsub_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
real-vec_wf, 
real-vec-norm_wf, 
real-vec-sub_wf, 
subtype_rel_self, 
int_seg_wf, 
real_wf, 
req_weakening, 
req_functionality, 
real-vec-norm-dim1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
universeIsType, 
productIsType, 
because_Cache, 
isectIsTypeImplies, 
functionEquality, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}\^{}1].    (d(x;y)  =  |(x  0)  -  y  0|)
Date html generated:
2019_10_30-AM-08_28_38
Last ObjectModification:
2019_06_25-PM-03_23_31
Theory : reals
Home
Index