Nuprl Lemma : real-vec-norm-dim1
∀[x:ℝ^1]. (||x|| = |x 0|)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
real-vec: ℝ^n, 
rabs: |x|, 
req: x = y, 
uall: ∀[x:A]. B[x], 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
dot-product: x⋅y, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
less_than: a < b, 
squash: ↓T, 
so_apply: x[s]
Lemmas referenced : 
square-req-iff, 
real-vec-norm_wf, 
istype-void, 
istype-le, 
rabs_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
real-vec-norm-nonneg, 
zero-rleq-rabs, 
req_functionality, 
rnexp_wf, 
dot-product_wf, 
real-vec-norm-squared, 
rabs-rnexp2, 
req_witness, 
real-vec_wf, 
rmul_wf, 
rsum_single, 
int_seg_properties, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_wf, 
req_weakening, 
rnexp2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
universeIsType, 
productIsType, 
productElimination, 
because_Cache, 
setElimination, 
rename, 
imageElimination, 
int_eqEquality, 
addEquality
Latex:
\mforall{}[x:\mBbbR{}\^{}1].  (||x||  =  |x  0|)
Date html generated:
2019_10_30-AM-08_08_26
Last ObjectModification:
2019_06_25-PM-03_20_09
Theory : reals
Home
Index