Nuprl Lemma : rsum_single
∀[n:ℤ]. ∀[x:{n..n + 1-} ⟶ ℝ].  (Σ{x[k] | n≤k≤n} = x[n])
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}, 
req: x = y, 
real: ℝ, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsum_wf, 
int_seg_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
lelt_wf, 
real_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int-to-real_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
radd_wf, 
subtract_wf, 
subtract-add-cancel, 
intformand_wf, 
int_formula_prop_and_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
req_weakening, 
req_functionality, 
rsum_unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
functionEquality, 
lambdaFormation, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
setElimination, 
rename
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\{n..n  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}n\}  =  x[n])
Date html generated:
2017_10_03-AM-08_57_48
Last ObjectModification:
2017_07_28-AM-07_37_44
Theory : reals
Home
Index