Nuprl Lemma : square-req-iff

x,y:ℝ.  ((r0 ≤ x)  (r0 ≤ y)  (x ⇐⇒ x^2 y^2))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) prop: rev_implies:  Q nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n btrue: tt nat: le: A ≤ B false: False not: ¬A
Lemmas referenced :  req_functionality rabs_wf rabs_functionality req_weakening req_wf rnexp-req-iff-even less_than_wf rnexp_wf false_wf le_wf iff_wf rleq_wf int-to-real_wf real_wf rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination productElimination addLevel impliesFunctionality dependent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}2  =  y\^{}2))



Date html generated: 2016_10_26-AM-09_10_38
Last ObjectModification: 2016_10_01-AM-11_42_42

Theory : reals


Home Index