Step
*
2
1
of Lemma
real-cube-uniform-continuity
1. k : ℕ
2. n : ℤ
3. [%1] : 0 < n
4. ∀a,b:ℕn - 1 ⟶ ℝ.
((∀i:ℕn - 1. ((a i) < (b i)))
⇒ (∀f:{f:real-cube(n - 1;a;b) ⟶ ℝ^k| ∀x,y:real-cube(n - 1;a;b). (req-vec(n - 1;x;y)
⇒ req-vec(k;f x;f y))} .
∀e:{e:ℝ| r0 < e} .
∃d:ℕ+. ∀x,y:real-cube(n - 1;a;b). ((d(x;y) ≤ (r1/r(d)))
⇒ (d(f x;f y) ≤ e))))
5. a : ℕn ⟶ ℝ
6. b : ℕn ⟶ ℝ
7. ∀i:ℕn. ((a i) < (b i))
8. f : {f:real-cube(n;a;b) ⟶ ℝ^k| ∀x,y:real-cube(n;a;b). (req-vec(n;x;y)
⇒ req-vec(k;f x;f y))}
9. e : {e:ℝ| r0 < e}
10. n = 1 ∈ ℤ
⊢ ∃d:ℕ+. ∀x,y:real-cube(1;a;b). ((d(x;y) ≤ (r1/r(d)))
⇒ (d(f x;f y) ≤ e))
BY
{ ((Assert ∀x:{x:ℝ| x ∈ [a 0, b 0]} . (λu.x ∈ real-cube(1;a;b)) BY
((D 0 THENA Auto)
THEN ((MemTypeCD THENW Auto)
THENL [(Unfold `real-vec` 0 THEN Auto)
; ((D 0 THENA Auto) THEN IntSegCases (-1) THEN Reduce 0 THEN Auto)]
)
))
THEN (InstLemma `real-fun-iff-continuous` [⌜a 0⌝;⌜b 0⌝]⋅ THENA Auto)
THEN Eliminate ⌜n⌝⋅) }
1
1. k : ℕ
2. n : ℤ
3. [%1] : 0 < 1
4. ∀a,b:ℕ1 - 1 ⟶ ℝ.
((∀i:ℕ1 - 1. ((a i) < (b i)))
⇒ (∀f:{f:real-cube(1 - 1;a;b) ⟶ ℝ^k| ∀x,y:real-cube(1 - 1;a;b). (req-vec(1 - 1;x;y)
⇒ req-vec(k;f x;f y))} .
∀e:{e:ℝ| r0 < e} .
∃d:ℕ+. ∀x,y:real-cube(1 - 1;a;b). ((d(x;y) ≤ (r1/r(d)))
⇒ (d(f x;f y) ≤ e))))
5. a : ℕ1 ⟶ ℝ
6. b : ℕ1 ⟶ ℝ
7. ∀i:ℕ1. ((a i) < (b i))
8. f : {f:real-cube(1;a;b) ⟶ ℝ^k| ∀x,y:real-cube(1;a;b). (req-vec(1;x;y)
⇒ req-vec(k;f x;f y))}
9. e : {e:ℝ| r0 < e}
10. n = 1 ∈ ℤ
11. ∀x:{x:ℝ| x ∈ [a 0, b 0]} . (λu.x ∈ real-cube(1;a;b))
12. ∀f:[a 0, b 0] ⟶ℝ. (real-fun(f;a 0;b 0)
⇐⇒ real-cont(f;a 0;b 0))
⊢ ∃d:ℕ+. ∀x,y:real-cube(1;a;b). ((d(x;y) ≤ (r1/r(d)))
⇒ (d(f x;f y) ≤ e))
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbZ{}
3. [\%1] : 0 < n
4. \mforall{}a,b:\mBbbN{}n - 1 {}\mrightarrow{} \mBbbR{}.
((\mforall{}i:\mBbbN{}n - 1. ((a i) < (b i)))
{}\mRightarrow{} (\mforall{}f:\{f:real-cube(n - 1;a;b) {}\mrightarrow{} \mBbbR{}\^{}k|
\mforall{}x,y:real-cube(n - 1;a;b). (req-vec(n - 1;x;y) {}\mRightarrow{} req-vec(k;f x;f y))\} . \mforall{}e:\{e:\mBbbR{}|
r0 < e\} .
\mexists{}d:\mBbbN{}\msupplus{}. \mforall{}x,y:real-cube(n - 1;a;b). ((d(x;y) \mleq{} (r1/r(d))) {}\mRightarrow{} (d(f x;f y) \mleq{} e))))
5. a : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
6. b : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
7. \mforall{}i:\mBbbN{}n. ((a i) < (b i))
8. f : \{f:real-cube(n;a;b) {}\mrightarrow{} \mBbbR{}\^{}k| \mforall{}x,y:real-cube(n;a;b). (req-vec(n;x;y) {}\mRightarrow{} req-vec(k;f x;f y))\}
9. e : \{e:\mBbbR{}| r0 < e\}
10. n = 1
\mvdash{} \mexists{}d:\mBbbN{}\msupplus{}. \mforall{}x,y:real-cube(1;a;b). ((d(x;y) \mleq{} (r1/r(d))) {}\mRightarrow{} (d(f x;f y) \mleq{} e))
By
Latex:
((Assert \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a 0, b 0]\} . (\mlambda{}u.x \mmember{} real-cube(1;a;b)) BY
((D 0 THENA Auto)
THEN ((MemTypeCD THENW Auto)
THENL [(Unfold `real-vec` 0 THEN Auto)
; ((D 0 THENA Auto) THEN IntSegCases (-1) THEN Reduce 0 THEN Auto)]
)
))
THEN (InstLemma `real-fun-iff-continuous` [\mkleeneopen{}a 0\mkleeneclose{};\mkleeneopen{}b 0\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Eliminate \mkleeneopen{}n\mkleeneclose{}\mcdot{})
Home
Index