Nuprl Lemma : realvec-ibs_wf
∀[n:ℕ]. ∀[p:ℝ^n].  (realvec-ibs(n;p) ∈ IBS)
Proof
Definitions occuring in Statement : 
realvec-ibs: realvec-ibs(n;p)
, 
incr-binary-seq: IBS
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
realvec-ibs: realvec-ibs(n;p)
Lemmas referenced : 
rless_ibs_wf, 
int-to-real_wf, 
real-vec-norm_wf, 
real-vec_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (realvec-ibs(n;p)  \mmember{}  IBS)
Date html generated:
2019_10_30-AM-10_16_03
Last ObjectModification:
2019_06_28-PM-01_55_49
Theory : real!vectors
Home
Index