Nuprl Lemma : realvec-ibs_wf

[n:ℕ]. ∀[p:ℝ^n].  (realvec-ibs(n;p) ∈ IBS)


Proof




Definitions occuring in Statement :  realvec-ibs: realvec-ibs(n;p) incr-binary-seq: IBS real-vec: ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T realvec-ibs: realvec-ibs(n;p)
Lemmas referenced :  rless_ibs_wf int-to-real_wf real-vec-norm_wf real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (realvec-ibs(n;p)  \mmember{}  IBS)



Date html generated: 2019_10_30-AM-10_16_03
Last ObjectModification: 2019_06_28-PM-01_55_49

Theory : real!vectors


Home Index