Nuprl Lemma : rless_ibs_wf
∀[x,y:ℝ].  (rless_ibs(x;y) ∈ IBS)
Proof
Definitions occuring in Statement : 
rless_ibs: rless_ibs(x;y)
, 
incr-binary-seq: IBS
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rless_ibs: rless_ibs(x;y)
, 
mkibs: mkibs(n.p[n])
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
real: ℝ
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
l_exists: (∃x∈L. P[x])
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mkibs_wf, 
bl-exists_wf, 
int_seg_wf, 
upto_wf, 
lt_int_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
l_member_wf, 
istype-nat, 
length_upto, 
decidable__le, 
istype-le, 
length_wf, 
select-upto, 
select_wf, 
add_nat_plus, 
int_seg_subtype_nat, 
istype-false, 
nat_plus_properties, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
l_exists_wf, 
less_than_wf, 
assert-bl-exists, 
l_exists_functionality, 
assert_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
istype-assert, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
setIsType, 
lambdaFormation_alt, 
productIsType, 
inhabitedIsType, 
closedConclusion, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
baseClosed, 
equalityIstype
Latex:
\mforall{}[x,y:\mBbbR{}].    (rless\_ibs(x;y)  \mmember{}  IBS)
Date html generated:
2019_10_30-AM-10_15_53
Last ObjectModification:
2019_06_28-PM-01_55_43
Theory : real!vectors
Home
Index