Nuprl Lemma : rless_ibs_wf

[x,y:ℝ].  (rless_ibs(x;y) ∈ IBS)


Proof




Definitions occuring in Statement :  rless_ibs: rless_ibs(x;y) incr-binary-seq: IBS real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rless_ibs: rless_ibs(x;y) mkibs: mkibs(n.p[n]) so_lambda: λ2x.t[x] nat: real: nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] l_exists: (∃x∈L. P[x]) subtype_rel: A ⊆B less_than': less_than'(a;b) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mkibs_wf bl-exists_wf int_seg_wf upto_wf lt_int_wf int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than l_member_wf istype-nat length_upto decidable__le istype-le length_wf select-upto select_wf add_nat_plus int_seg_subtype_nat istype-false nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf l_exists_wf less_than_wf assert-bl-exists l_exists_functionality assert_wf iff_weakening_uiff assert_of_lt_int istype-assert real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis because_Cache applyEquality dependent_set_memberEquality_alt productElimination imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType setIsType lambdaFormation_alt productIsType inhabitedIsType closedConclusion equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply baseClosed equalityIstype

Latex:
\mforall{}[x,y:\mBbbR{}].    (rless\_ibs(x;y)  \mmember{}  IBS)



Date html generated: 2019_10_30-AM-10_15_53
Last ObjectModification: 2019_06_28-PM-01_55_43

Theory : real!vectors


Home Index