Nuprl Lemma : assert-bl-exists

[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (↑(∃x∈L.P[x])_b ⇐⇒ (∃x∈L. ↑P[x]))


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q bl-exists: (∃x∈L.P[x])_b top: Top assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] false: False l_member: (x ∈ l) cand: c∧ B nat: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) btrue: tt true: True
Lemmas referenced :  list-subtype bool_subtype_base subtype_base_sq assert_elim bor_wf assert_of_bor equal_wf or_wf cons_wf cons_member nil_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt nat_properties length_of_nil_lemma false_wf bool_wf l_exists_wf l_exists_iff reduce_cons_lemma reduce_nil_lemma list_wf and_wf exists_wf l_member_wf bl-exists_wf assert_wf iff_wf list_induction
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename setEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache addLevel productElimination independent_pairFormation impliesFunctionality functionEquality universeEquality natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll orFunctionality existsFunctionality andLevelFunctionality existsLevelFunctionality cumulativity productEquality unionElimination inlFormation inrFormation equalitySymmetry dependent_set_memberEquality equalityTransitivity levelHypothesis instantiate

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  \muparrow{}P[x]))



Date html generated: 2016_05_14-PM-02_10_05
Last ObjectModification: 2016_01_15-AM-07_59_52

Theory : list_1


Home Index