Step
*
1
2
1
1
1
of Lemma
remove-singularity-max-seq-mcauchy
1. X : Type
2. d : metric(X)
3. k : ℕ
4. λi.r0 ∈ ℝ^k
5. f : {p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} ⟶ X
6. z : X
7. c : {c:ℝ| r0 ≤ c}
8. ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
9. p : ℝ^k
10. b : ℕ+
11. N : ℕ+
12. (c/r(N)) ≤ (r1/r(b))
13. n : ℕ
14. m : ℕ
15. realvec-max-ibs(k;p) m ≠ 1
16. N ≤ n
17. N ≤ m
18. r0 < mdist(max-metric(k);p;λi.r0)
⇐⇒ ∃n:ℕ. ((realvec-max-ibs(k;p) n) = 1 ∈ ℤ)
19. ∀n:ℕ. (((realvec-max-ibs(k;p) n) = 0 ∈ ℤ)
⇒ (mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(n + 1))))
20. (realvec-max-ibs(k;p) n) = 1 ∈ ℤ
21. r0 < mdist(max-metric(k);p;λi.r0)
22. mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m + 1))
23. mdist(d;f p;z) ≤ (c/r(m + 1))
⊢ (c/r(m + 1)) ≤ (c/r(N))
BY
{ ((Assert (r1/r(m + 1)) ≤ (r1/r(N)) BY Auto) THEN nRMul ⌜c⌝ (-1)⋅ THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. \mlambda{}i.r0 \mmember{} \mBbbR{}\^{}k
5. f : \{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} {}\mrightarrow{} X
6. z : X
7. c : \{c:\mBbbR{}| r0 \mleq{} c\}
8. \mforall{}m:\mBbbN{}\msupplus{}. \mforall{}p:\{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} .
((mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(m))) {}\mRightarrow{} (mdist(d;f p;z) \mleq{} (c/r(m))))
9. p : \mBbbR{}\^{}k
10. b : \mBbbN{}\msupplus{}
11. N : \mBbbN{}\msupplus{}
12. (c/r(N)) \mleq{} (r1/r(b))
13. n : \mBbbN{}
14. m : \mBbbN{}
15. realvec-max-ibs(k;p) m \mneq{} 1
16. N \mleq{} n
17. N \mleq{} m
18. r0 < mdist(max-metric(k);p;\mlambda{}i.r0) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. ((realvec-max-ibs(k;p) n) = 1)
19. \mforall{}n:\mBbbN{}. (((realvec-max-ibs(k;p) n) = 0) {}\mRightarrow{} (mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(n + 1))))
20. (realvec-max-ibs(k;p) n) = 1
21. r0 < mdist(max-metric(k);p;\mlambda{}i.r0)
22. mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(m + 1))
23. mdist(d;f p;z) \mleq{} (c/r(m + 1))
\mvdash{} (c/r(m + 1)) \mleq{} (c/r(N))
By
Latex:
((Assert (r1/r(m + 1)) \mleq{} (r1/r(N)) BY Auto) THEN nRMul \mkleeneopen{}c\mkleeneclose{} (-1)\mcdot{} THEN Auto)
Home
Index