Nuprl Lemma : remove-singularity-max-seq-mcauchy
∀[X:Type]. ∀[d:metric(X)]. ∀[k:ℕ]. ∀[f:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)}  ⟶ X]. ∀[z:X].
  ((∃c:{c:ℝ| r0 ≤ c} 
     ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
       ((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m))) 
⇒ (mdist(d;f p;z) ≤ (c/r(m)))))
  
⇒ (∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)))
Proof
Definitions occuring in Statement : 
remove-singularity-max-seq: remove-singularity-max-seq(k;p;f;z)
, 
max-metric: max-metric(n)
, 
real-vec: ℝ^n
, 
mcauchy: mcauchy(d;n.x[n])
, 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
real: ℝ
, 
sq_stable: SqStable(P)
, 
rge: x ≥ y
, 
less_than: a < b
, 
squash: ↓T
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
incr-binary-seq: IBS
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
remove-singularity-max-seq: remove-singularity-max-seq(k;p;f;z)
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
sq_type: SQType(T)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
mcauchy: mcauchy(d;n.x[n])
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
mdist-symm, 
rinv-mul-as-rdiv, 
rleq-int-fractions, 
sq_stable__less_than, 
rmul_preserves_rleq2, 
sq_stable__rleq, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_properties, 
nequal_wf, 
mdist-same, 
decidable__le, 
rleq-int-fractions2, 
remove-singularity-max-seq_wf, 
istype-le, 
lelt_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
realvec-max-ibs_wf, 
eq_int_wf, 
realvec-max-ibs-property, 
nat_plus_subtype_nat, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
rmul-rinv3, 
rinv-of-rmul, 
req_inversion, 
rinv_functionality2, 
rmul_functionality, 
req_transitivity, 
rleq_functionality, 
itermSubtract_wf, 
int_entire_a, 
req_weakening, 
rmul-int, 
rneq_functionality, 
rinv_wf2, 
rmul_wf, 
mul_bounds_1b, 
rmul_preserves_rleq, 
istype-less_than, 
int_formula_prop_le_lemma, 
intformle_wf, 
mul_nat_plus, 
less_than_wf, 
set_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
rneq-int, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
rless-int-fractions2, 
r-archimedean-implies2, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
r-archimedean, 
istype-universe, 
metric_wf, 
istype-nat, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
max-metric_wf, 
real-vec_wf, 
mdist_wf, 
rless_wf, 
rleq_wf, 
real_wf, 
nat_plus_wf, 
int_seg_wf, 
int-to-real_wf
Rules used in proof : 
imageMemberEquality, 
addEquality, 
applyLambdaEquality, 
imageElimination, 
promote_hyp, 
equalityElimination, 
sqequalBase, 
baseClosed, 
equalityIstype, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
intEquality, 
cumulativity, 
universeEquality, 
instantiate, 
applyEquality, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
inrFormation_alt, 
independent_isectElimination, 
because_Cache, 
closedConclusion, 
functionIsType, 
setIsType, 
productIsType, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
lambdaFormation_alt, 
hypothesisEquality, 
natural_numberEquality, 
universeIsType, 
hypothesis, 
productElimination, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
lambdaEquality_alt, 
sqequalRule, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[k:\mBbbN{}].  \mforall{}[f:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}    {}\mrightarrow{}  X].  \mforall{}[z:X].
    ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
          \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}  .
              ((mdist(max-metric(k);p;\mlambda{}i.r0)  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
    {}\mRightarrow{}  (\mforall{}[p:\mBbbR{}\^{}k].  mcauchy(d;n.remove-singularity-max-seq(k;p;f;z)  n)))
Date html generated:
2019_10_30-AM-11_24_40
Last ObjectModification:
2019_10_29-PM-01_34_01
Theory : real!vectors
Home
Index