Nuprl Lemma : remove-singularity-max-seq-mcauchy

[X:Type]. ∀[d:metric(X)]. ∀[k:ℕ]. ∀[f:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)}  ⟶ X]. ∀[z:X].
  ((∃c:{c:ℝr0 ≤ c} 
     ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
       ((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))  (mdist(d;f p;z) ≤ (c/r(m)))))
   (∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)))


Proof




Definitions occuring in Statement :  remove-singularity-max-seq: remove-singularity-max-seq(k;p;f;z) max-metric: max-metric(n) real-vec: ^n mcauchy: mcauchy(d;n.x[n]) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  real: sq_stable: SqStable(P) rge: x ≥ y less_than: a < b squash: T assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  incr-binary-seq: IBS btrue: tt it: unit: Unit bool: 𝔹 remove-singularity-max-seq: remove-singularity-max-seq(k;p;f;z) req_int_terms: t1 ≡ t2 rdiv: (x/y) nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B sq_exists: x:A [B[x]] rless: x < y sq_type: SQType(T) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + prop: exists: x:A. B[x] all: x:A. B[x] mcauchy: mcauchy(d;n.x[n]) implies:  Q nat: le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} member: t ∈ T real-vec: ^n uall: [x:A]. B[x]
Lemmas referenced :  mdist-symm rinv-mul-as-rdiv rleq-int-fractions sq_stable__less_than rmul_preserves_rleq2 sq_stable__rleq rleq_weakening_equal rleq_functionality_wrt_implies itermAdd_wf int_term_value_add_lemma int_seg_properties nequal_wf mdist-same decidable__le rleq-int-fractions2 remove-singularity-max-seq_wf istype-le lelt_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert realvec-max-ibs_wf eq_int_wf realvec-max-ibs-property nat_plus_subtype_nat real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rmul-rinv3 rinv-of-rmul req_inversion rinv_functionality2 rmul_functionality req_transitivity rleq_functionality itermSubtract_wf int_entire_a req_weakening rmul-int rneq_functionality rinv_wf2 rmul_wf mul_bounds_1b rmul_preserves_rleq istype-less_than int_formula_prop_le_lemma intformle_wf mul_nat_plus less_than_wf set_subtype_base int_formula_prop_eq_lemma intformeq_wf rneq-int int_term_value_mul_lemma itermMultiply_wf rless-int-fractions2 r-archimedean-implies2 int_subtype_base subtype_base_sq decidable__equal_int r-archimedean istype-universe metric_wf istype-nat int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties nat_plus_properties rless-int rdiv_wf max-metric_wf real-vec_wf mdist_wf rless_wf rleq_wf real_wf nat_plus_wf int_seg_wf int-to-real_wf
Rules used in proof :  imageMemberEquality addEquality applyLambdaEquality imageElimination promote_hyp equalityElimination sqequalBase baseClosed equalityIstype dependent_set_memberEquality_alt multiplyEquality intEquality cumulativity universeEquality instantiate applyEquality independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination independent_functionElimination dependent_functionElimination inrFormation_alt independent_isectElimination because_Cache closedConclusion functionIsType setIsType productIsType equalitySymmetry equalityTransitivity inhabitedIsType lambdaFormation_alt hypothesisEquality natural_numberEquality universeIsType hypothesis productElimination rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction lambdaEquality_alt sqequalRule cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[k:\mBbbN{}].  \mforall{}[f:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}    {}\mrightarrow{}  X].  \mforall{}[z:X].
    ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
          \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}  .
              ((mdist(max-metric(k);p;\mlambda{}i.r0)  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
    {}\mRightarrow{}  (\mforall{}[p:\mBbbR{}\^{}k].  mcauchy(d;n.remove-singularity-max-seq(k;p;f;z)  n)))



Date html generated: 2019_10_30-AM-11_24_40
Last ObjectModification: 2019_10_29-PM-01_34_01

Theory : real!vectors


Home Index