Nuprl Lemma : realvec-max-ibs_wf

[n:ℕ]. ∀[p:ℝ^n].  (realvec-max-ibs(n;p) ∈ IBS)


Proof




Definitions occuring in Statement :  realvec-max-ibs: realvec-max-ibs(n;p) incr-binary-seq: IBS real-vec: ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: realvec-max-ibs: realvec-max-ibs(n;p)
Lemmas referenced :  int-to-real_wf int_seg_wf rless_ibs_wf mdist_wf real-vec_wf max-metric_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis universeIsType natural_numberEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (realvec-max-ibs(n;p)  \mmember{}  IBS)



Date html generated: 2019_10_30-AM-10_16_10
Last ObjectModification: 2019_07_03-PM-04_17_29

Theory : real!vectors


Home Index