Nuprl Lemma : rinv_functionality2

[x,y:ℝ].  (x ≠ r0  (x y)  (rinv(x) rinv(y)))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y int-to-real: r(n) real: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  req_wf rneq_wf int-to-real_wf req_witness rinv_wf2 real_wf req_weakening req_functionality rinv_functionality req_inversion rneq_functionality rnonzero_functionality rnonzero-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination isect_memberEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mneq{}  r0  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (rinv(x)  =  rinv(y)))



Date html generated: 2016_05_18-AM-07_11_01
Last ObjectModification: 2015_12_28-AM-00_39_35

Theory : reals


Home Index