Nuprl Lemma : rinv_functionality2
∀[x,y:ℝ].  (x ≠ r0 
⇒ (x = y) 
⇒ (rinv(x) = rinv(y)))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rinv: rinv(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req_wf, 
rneq_wf, 
int-to-real_wf, 
req_witness, 
rinv_wf2, 
real_wf, 
req_weakening, 
req_functionality, 
rinv_functionality, 
req_inversion, 
rneq_functionality, 
rnonzero_functionality, 
rnonzero-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mneq{}  r0  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (rinv(x)  =  rinv(y)))
Date html generated:
2016_05_18-AM-07_11_01
Last ObjectModification:
2015_12_28-AM-00_39_35
Theory : reals
Home
Index