Nuprl Lemma : rinv_functionality

[x,y:ℝ].  (rnonzero(x)  (x y)  (rinv(x) rinv(y)))


Proof




Definitions occuring in Statement :  rinv: rinv(x) rnonzero: rnonzero(x) req: y real: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a rnonzero: rnonzero(x) exists: x:A. B[x] rinv: rinv(x) subtype_rel: A ⊆B nat_plus: + int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] prop: guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top has-value: (a)↓ real: nat: rev_uimplies: rev_uimplies(P;Q) le: A ≤ B rev_implies:  Q less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T sq_stable: SqStable(P) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  ge: i ≥  reg-seq-inv: reg-seq-inv(x) req: y reg-seq-adjust: reg-seq-adjust(n;x)
Lemmas referenced :  rnonzero_functionality req-iff-bdd-diff rinv_wf subtype_rel_sets less_than_wf le_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf value-type-has-value int-value-type assert_of_lt_int absval_wf nat_wf assert_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel lt_int_wf mu-ge-property int_upper_wf mu-ge_wf nat_plus_wf int_upper_properties uall_wf int_seg_wf not_wf equal_wf req_wf rnonzero_wf req_witness rnonzero-lemma1 sq_stable__le int_seg_properties set-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int reg-seq-inv_wf int_subtype_base multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma intformeq_wf int_formula_prop_eq_lemma mul_bounds_1a nat_plus_subtype_nat reg-seq-adjust_wf regular-int-seq_wf ifthenelse_wf eq_int_eq_false iff_weakening_equal mul_nat_plus reg-seq-adjust-property nat_properties lelt_wf accelerate_wf bdd-diff_functionality accelerate-bdd-diff bdd-diff-iff-eventual imax_wf imax_nat_plus exists_wf all_wf subtract_wf less_than_transitivity1 itermAdd_wf int_term_value_add_lemma rinv-functionality-lemma mul-associates mul-swap and_wf imax_ub top_wf not-equal-2 le_antisymmetry_iff add-associates add-swap bfalse_wf less-iff-le add-zero add_nat_wf multiply_nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaFormation independent_functionElimination productElimination isectElimination independent_isectElimination sqequalRule dependent_pairFormation applyEquality intEquality because_Cache lambdaEquality natural_numberEquality setElimination rename setEquality applyLambdaEquality unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll callbyvalueReduce dependent_set_memberEquality equalityTransitivity equalitySymmetry productEquality imageElimination promote_hyp imageMemberEquality baseClosed equalityElimination instantiate cumulativity multiplyEquality pointwiseFunctionality baseApply closedConclusion functionEquality functionExtensionality addEquality addLevel hyp_replacement levelHypothesis inrFormation lessCases sqequalAxiom inlFormation

Latex:
\mforall{}[x,y:\mBbbR{}].    (rnonzero(x)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (rinv(x)  =  rinv(y)))



Date html generated: 2017_10_02-PM-07_16_55
Last ObjectModification: 2017_07_28-AM-07_21_06

Theory : reals


Home Index