Nuprl Lemma : rinv-functionality-lemma

x,y:ℤ. ∀a,b,n:ℕ+.
  ((n ≤ (a |x|))  (n ≤ (b |y|))  (|x y| ≤ 4)  (|((4 n) ÷ x) (4 n) ÷ y| ≤ (2 (16 b))))


Proof




Definitions occuring in Statement :  absval: |i| nat_plus: + le: A ≤ B all: x:A. B[x] implies:  Q divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) guard: {T} absval: |i| nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat: squash: T true: True iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q int_nzero: -o subtract: m le: A ≤ B rev_uimplies: rev_uimplies(P;Q) ge: i ≥  cand: c∧ B uiff: uiff(P;Q) less_than': less_than'(a;b)
Lemmas referenced :  mul_com absval_sym rem_bounds_absval_le mul_preserves_le absval_pos nat_plus_subtype_nat mul_bounds_1a multiply_functionality_wrt_le absval-diff-symmetry false_wf int_term_value_add_lemma itermAdd_wf multiply-is-int-iff add_functionality_wrt_eq int-triangle-inequality add_functionality_wrt_le le_weakening le_functionality decidable__le add-commutes add-swap one-mul mul-associates mul-commutes mul-swap minus-one-mul add-associates minus-add mul-distributes div_rem_sum2 nequal_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf decidable__equal_int iff_weakening_equal absval_mul true_wf squash_wf nat_plus_wf nat_wf le_wf int_entire_a absval_nat_plus subtract_wf absval_wf mul_cancel_in_le equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule setElimination rename natural_numberEquality minusEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache divideEquality multiplyEquality applyEquality addEquality imageElimination imageMemberEquality baseClosed universeEquality productElimination unionElimination dependent_set_memberEquality remainderEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}a,b,n:\mBbbN{}\msupplus{}.
    ((n  \mleq{}  (a  *  |x|))
    {}\mRightarrow{}  (n  \mleq{}  (b  *  |y|))
    {}\mRightarrow{}  (|x  -  y|  \mleq{}  4)
    {}\mRightarrow{}  (|((4  *  n  *  n)  \mdiv{}  x)  -  (4  *  n  *  n)  \mdiv{}  y|  \mleq{}  (2  +  (16  *  a  *  b))))



Date html generated: 2016_05_18-AM-06_54_19
Last ObjectModification: 2016_01_17-AM-01_47_50

Theory : reals


Home Index