Nuprl Lemma : realvec-max-ibs-property

k:ℕ. ∀p:ℝ^k.
  ((r0 < mdist(max-metric(k);p;λi.r0) ⇐⇒ ∃n:ℕ((realvec-max-ibs(k;p) n) 1 ∈ ℤ))
  ∧ (∀n:ℕ(((realvec-max-ibs(k;p) n) 0 ∈ ℤ (mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(n 1))))))


Proof




Definitions occuring in Statement :  realvec-max-ibs: realvec-max-ibs(n;p) max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] real-vec: ^n member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: realvec-max-ibs: realvec-max-ibs(n;p) implies:  Q or: P ∨ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a false: False rneq: x ≠ y rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B incr-binary-seq: IBS so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  int-to-real_wf int_seg_wf mdist-nonneg real-vec_wf max-metric_wf rless_ibs_property rless_transitivity1 mdist_wf rless_irreflexivity req_inversion rleq_transitivity rdiv_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf rleq_weakening rless_ibs_wf set_subtype_base lelt_wf int_subtype_base istype-nat rabs_wf rsub_wf rminus_wf itermSubtract_wf itermMinus_wf req_wf squash_wf true_wf real_wf rabs-rminus rabs-of-nonneg subtype_rel_self iff_weakening_equal req_functionality rabs_functionality req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule lambdaEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis universeIsType natural_numberEquality hypothesisEquality equalityTransitivity equalitySymmetry dependent_functionElimination because_Cache independent_pairFormation promote_hyp independent_functionElimination unionElimination independent_isectElimination voidElimination closedConclusion addEquality inrFormation_alt approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt equalityIstype applyEquality inhabitedIsType intEquality baseClosed sqequalBase imageElimination imageMemberEquality instantiate universeEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}p:\mBbbR{}\^{}k.
    ((r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((realvec-max-ibs(k;p)  n)  =  1))
    \mwedge{}  (\mforall{}n:\mBbbN{}.  (((realvec-max-ibs(k;p)  n)  =  0)  {}\mRightarrow{}  (mdist(max-metric(k);p;\mlambda{}i.r0)  \mleq{}  (r(4)/r(n  +  1))))))



Date html generated: 2019_10_30-AM-10_16_13
Last ObjectModification: 2019_07_03-PM-04_22_00

Theory : real!vectors


Home Index