Nuprl Lemma : realvec-max-ibs-property
∀k:ℕ. ∀p:ℝ^k.
  ((r0 < mdist(max-metric(k);p;λi.r0) 
⇐⇒ ∃n:ℕ. ((realvec-max-ibs(k;p) n) = 1 ∈ ℤ))
  ∧ (∀n:ℕ. (((realvec-max-ibs(k;p) n) = 0 ∈ ℤ) 
⇒ (mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(n + 1))))))
Proof
Definitions occuring in Statement : 
realvec-max-ibs: realvec-max-ibs(n;p)
, 
max-metric: max-metric(n)
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
realvec-max-ibs: realvec-max-ibs(n;p)
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
false: False
, 
rneq: x ≠ y
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
incr-binary-seq: IBS
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
int-to-real_wf, 
int_seg_wf, 
mdist-nonneg, 
real-vec_wf, 
max-metric_wf, 
rless_ibs_property, 
rless_transitivity1, 
mdist_wf, 
rless_irreflexivity, 
req_inversion, 
rleq_transitivity, 
rdiv_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
rleq_weakening, 
rless_ibs_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
istype-nat, 
rabs_wf, 
rsub_wf, 
rminus_wf, 
itermSubtract_wf, 
itermMinus_wf, 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
rabs-rminus, 
rabs-of-nonneg, 
subtype_rel_self, 
iff_weakening_equal, 
req_functionality, 
rabs_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
because_Cache, 
independent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
unionElimination, 
independent_isectElimination, 
voidElimination, 
closedConclusion, 
addEquality, 
inrFormation_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityIstype, 
applyEquality, 
inhabitedIsType, 
intEquality, 
baseClosed, 
sqequalBase, 
imageElimination, 
imageMemberEquality, 
instantiate, 
universeEquality
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}p:\mBbbR{}\^{}k.
    ((r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((realvec-max-ibs(k;p)  n)  =  1))
    \mwedge{}  (\mforall{}n:\mBbbN{}.  (((realvec-max-ibs(k;p)  n)  =  0)  {}\mRightarrow{}  (mdist(max-metric(k);p;\mlambda{}i.r0)  \mleq{}  (r(4)/r(n  +  1))))))
Date html generated:
2019_10_30-AM-10_16_13
Last ObjectModification:
2019_07_03-PM-04_22_00
Theory : real!vectors
Home
Index