Step
*
1
of Lemma
remove-singularity-max
1. X : Type
2. d : metric(X)
3. k : ℕ
4. λi.r0 ∈ ℝ^k
5. f : {p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} ⟶ X
6. z : X
7. ∃c:{c:ℝ| r0 ≤ c}
∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
8. cau : ∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)
9. cmplt : mcomplete(X with d)
10. p : ℝ^k
11. req-vec(k;p;λi.r0)
⊢ lim n→∞.remove-singularity-max-seq(k;p;f;z) n = z
BY
{ (Assert ∀n:ℕ. ((remove-singularity-max-seq(k;p;f;z) n) = z ∈ X) BY
(Auto
THEN RepUR ``remove-singularity-max-seq`` 0
THEN AutoSplit
THEN (Assert r0 < mdist(max-metric(k);p;λi.r0) BY
(InstLemma `realvec-max-ibs-property` [⌜k⌝;⌜p⌝]⋅ THEN Auto))
THEN (Assert mdist(max-metric(k);p;λi.r0) = r0 BY
(Unfold `mdist` 0 THEN Fold `meq` 0 THEN EAuto 1))
THEN Auto)) }
1
1. X : Type
2. d : metric(X)
3. k : ℕ
4. λi.r0 ∈ ℝ^k
5. f : {p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} ⟶ X
6. z : X
7. ∃c:{c:ℝ| r0 ≤ c}
∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
8. cau : ∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)
9. cmplt : mcomplete(X with d)
10. p : ℝ^k
11. req-vec(k;p;λi.r0)
12. ∀n:ℕ. ((remove-singularity-max-seq(k;p;f;z) n) = z ∈ X)
⊢ lim n→∞.remove-singularity-max-seq(k;p;f;z) n = z
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. \mlambda{}i.r0 \mmember{} \mBbbR{}\^{}k
5. f : \{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} {}\mrightarrow{} X
6. z : X
7. \mexists{}c:\{c:\mBbbR{}| r0 \mleq{} c\}
\mforall{}m:\mBbbN{}\msupplus{}. \mforall{}p:\{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} .
((mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(m))) {}\mRightarrow{} (mdist(d;f p;z) \mleq{} (c/r(m))))
8. cau : \mforall{}[p:\mBbbR{}\^{}k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)
9. cmplt : mcomplete(X with d)
10. p : \mBbbR{}\^{}k
11. req-vec(k;p;\mlambda{}i.r0)
\mvdash{} lim n\mrightarrow{}\minfty{}.remove-singularity-max-seq(k;p;f;z) n = z
By
Latex:
(Assert \mforall{}n:\mBbbN{}. ((remove-singularity-max-seq(k;p;f;z) n) = z) BY
(Auto
THEN RepUR ``remove-singularity-max-seq`` 0
THEN AutoSplit
THEN (Assert r0 < mdist(max-metric(k);p;\mlambda{}i.r0) BY
(InstLemma `realvec-max-ibs-property` [\mkleeneopen{}k\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{} THEN Auto))
THEN (Assert mdist(max-metric(k);p;\mlambda{}i.r0) = r0 BY
(Unfold `mdist` 0 THEN Fold `meq` 0 THEN EAuto 1))
THEN Auto))
Home
Index