Nuprl Lemma : remove-singularity-max

[X:Type]. ∀[d:metric(X)].
  ∀k:ℕ. ∀f:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)}  ⟶ X. ∀z:X.
    ((∃c:{c:ℝr0 ≤ c} 
       ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
         ((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))  (mdist(d;f p;z) ≤ (c/r(m)))))
     mcomplete(X with d)
     (∃g:ℝ^k ⟶ X
         ((∀p:ℝ^k. (req-vec(k;p;λi.r0)  p ≡ z)) ∧ (∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} p ≡ p))))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) req-vec: req-vec(n;x;y) real-vec: ^n mcomplete: mcomplete(M) mk-metric-space: with d mdist: mdist(d;x;y) meq: x ≡ y metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: cand: c∧ B uimplies: supposing a meq: x ≡ y nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top remove-singularity-max-seq: remove-singularity-max-seq(k;p;f;z) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) incr-binary-seq: IBS ifthenelse: if then else fi  mdist: mdist(d;x;y) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b mconverges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]] less_than': less_than'(a;b) true: True squash: T rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) rless: x < y eq_int: (i =z j) real:
Lemmas referenced :  remove-singularity-max-seq-mcauchy int-to-real_wf int_seg_wf cauchy-mlimit_wf remove-singularity-max-seq_wf mcauchy_wf cauchy-mlimit-unique req_witness req-vec_wf rless_wf mdist_wf real-vec_wf max-metric_wf meq_wf mcomplete_wf mk-metric-space_wf real_wf rleq_wf nat_plus_wf rdiv_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-nat metric_wf istype-universe eq_int_wf realvec-max-ibs_wf eqtt_to_assert assert_of_eq_int realvec-max-ibs-property set_subtype_base lelt_wf int_subtype_base req-vec-meq-max-metric rless_transitivity1 rleq_weakening rless_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int istype-le rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal rleq_functionality mdist-same req_weakening sq_stable__rless ibs-property sq_stable__less_than ifthenelse_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt sqequalRule lambdaEquality_alt setElimination rename productElimination universeIsType natural_numberEquality promote_hyp independent_functionElimination dependent_pairFormation_alt applyEquality equalityTransitivity equalitySymmetry isectIsType inhabitedIsType independent_isectElimination because_Cache independent_pairFormation setIsType productIsType functionIsType closedConclusion inrFormation_alt dependent_functionElimination unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination instantiate universeEquality equalityElimination equalityIstype intEquality baseClosed sqequalBase cumulativity dependent_set_memberFormation_alt dependent_set_memberEquality_alt multiplyEquality imageElimination imageMemberEquality addEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}k:\mBbbN{}.  \mforall{}f:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}    {}\mrightarrow{}  X.  \mforall{}z:X.
        ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
              \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}  .
                  ((mdist(max-metric(k);p;\mlambda{}i.r0)  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
        {}\mRightarrow{}  mcomplete(X  with  d)
        {}\mRightarrow{}  (\mexists{}g:\mBbbR{}\^{}k  {}\mrightarrow{}  X
                  ((\mforall{}p:\mBbbR{}\^{}k.  (req-vec(k;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  z))
                  \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  mdist(max-metric(k);p;\mlambda{}i.r0)\}  .  g  p  \mequiv{}  f  p))))



Date html generated: 2019_10_30-AM-11_24_52
Last ObjectModification: 2019_07_03-PM-04_53_36

Theory : real!vectors


Home Index