Nuprl Lemma : cauchy-mlimit-unique
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[x:ℕ ⟶ X]. ∀[c:mcauchy(d;n.x n)]. ∀[z:X].
  cauchy-mlimit(cmplt;x;c) ≡ z supposing lim n→∞.x n = z
Proof
Definitions occuring in Statement : 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c)
, 
mcomplete: mcomplete(M)
, 
mconverges-to: lim n→∞.x[n] = y
, 
mcauchy: mcauchy(d;n.x[n])
, 
mk-metric-space: X with d
, 
meq: x ≡ y
, 
metric: metric(X)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
meq: x ≡ y
, 
metric: metric(X)
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
converges-to-cauchy-mlimit, 
m-unique-limit, 
istype-nat, 
cauchy-mlimit_wf, 
meq_inversion, 
req_witness, 
int-to-real_wf, 
mconverges-to_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[c:mcauchy(d;n.x  n)].  \mforall{}[z:X].
    cauchy-mlimit(cmplt;x;c)  \mequiv{}  z  supposing  lim  n\mrightarrow{}\minfty{}.x  n  =  z
Date html generated:
2019_10_30-AM-06_43_31
Last ObjectModification:
2019_10_02-AM-10_55_55
Theory : reals
Home
Index