Nuprl Lemma : cauchy-mlimit-unique

[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[x:ℕ ⟶ X]. ∀[c:mcauchy(d;n.x n)]. ∀[z:X].
  cauchy-mlimit(cmplt;x;c) ≡ supposing lim n→∞.x z


Proof




Definitions occuring in Statement :  cauchy-mlimit: cauchy-mlimit(cmplt;x;c) mcomplete: mcomplete(M) mconverges-to: lim n→∞.x[n] y mcauchy: mcauchy(d;n.x[n]) mk-metric-space: with d meq: x ≡ y metric: metric(X) nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} meq: x ≡ y metric: metric(X) implies:  Q prop:
Lemmas referenced :  converges-to-cauchy-mlimit m-unique-limit istype-nat cauchy-mlimit_wf meq_inversion req_witness int-to-real_wf mconverges-to_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality_alt applyEquality independent_isectElimination setElimination rename natural_numberEquality independent_functionElimination universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[c:mcauchy(d;n.x  n)].  \mforall{}[z:X].
    cauchy-mlimit(cmplt;x;c)  \mequiv{}  z  supposing  lim  n\mrightarrow{}\minfty{}.x  n  =  z



Date html generated: 2019_10_30-AM-06_43_31
Last ObjectModification: 2019_10_02-AM-10_55_55

Theory : reals


Home Index