Nuprl Lemma : cauchy-mlimit-unique
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[x:ℕ ⟶ X]. ∀[c:mcauchy(d;n.x n)]. ∀[z:X].
  cauchy-mlimit(cmplt;x;c) ≡ z supposing lim n→∞.x n = z
Proof
Definitions occuring in Statement : 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c), 
mcomplete: mcomplete(M), 
mconverges-to: lim n→∞.x[n] = y, 
mcauchy: mcauchy(d;n.x[n]), 
mk-metric-space: X with d, 
meq: x ≡ y, 
metric: metric(X), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
meq: x ≡ y, 
metric: metric(X), 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
converges-to-cauchy-mlimit, 
m-unique-limit, 
istype-nat, 
cauchy-mlimit_wf, 
meq_inversion, 
req_witness, 
int-to-real_wf, 
mconverges-to_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[c:mcauchy(d;n.x  n)].  \mforall{}[z:X].
    cauchy-mlimit(cmplt;x;c)  \mequiv{}  z  supposing  lim  n\mrightarrow{}\minfty{}.x  n  =  z
Date html generated:
2019_10_30-AM-06_43_31
Last ObjectModification:
2019_10_02-AM-10_55_55
Theory : reals
Home
Index