Nuprl Lemma : converges-to-cauchy-mlimit

[X:Type]
  ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀x:ℕ ⟶ X. ∀c:mcauchy(d;n.x n).  lim n→∞.x cauchy-mlimit(cmplt;x;c)


Proof




Definitions occuring in Statement :  cauchy-mlimit: cauchy-mlimit(cmplt;x;c) mcomplete: mcomplete(M) mconverges-to: lim n→∞.x[n] y mcauchy: mcauchy(d;n.x[n]) mk-metric-space: with d metric: metric(X) nat: uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] mcomplete: mcomplete(M) mk-metric-space: with d cauchy-mlimit: cauchy-mlimit(cmplt;x;c) member: t ∈ T subtype_rel: A ⊆B metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a implies:  Q mconverges: x[n]↓ as n→∞ exists: x:A. B[x] pi1: fst(t)
Lemmas referenced :  nat_wf subtype_rel_function mcauchy_wf istype-nat mconverges_wf subtype_rel_self mcomplete_wf mk-metric-space_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution sqequalRule cut applyEquality functionExtensionality hypothesisEquality functionEquality introduction extract_by_obid hypothesis isectElimination thin setElimination rename lambdaEquality_alt because_Cache independent_isectElimination inhabitedIsType productElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType functionIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.  \mforall{}c:mcauchy(d;n.x  n).
        lim  n\mrightarrow{}\minfty{}.x  n  =  cauchy-mlimit(cmplt;x;c)



Date html generated: 2019_10_30-AM-06_43_11
Last ObjectModification: 2019_10_02-AM-10_55_37

Theory : reals


Home Index