Nuprl Lemma : m-unique-limit
∀[X:Type]. ∀d:metric(X). ∀x:ℕ ⟶ X.  ∀[y1,y2:X].  (y1 ≡ y2) supposing (lim n→∞.x[n] = y1 and lim n→∞.x[n] = y2)
Proof
Definitions occuring in Statement : 
mconverges-to: lim n→∞.x[n] = y
, 
meq: x ≡ y
, 
metric: metric(X)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
mconverges-to: lim n→∞.x[n] = y
, 
meq: x ≡ y
, 
metric: metric(X)
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
sq_exists: ∃x:A [B[x]]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rge: x ≥ y
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
req_int_terms: t1 ≡ t2
, 
mdist: mdist(d;x;y)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rdiv: (x/y)
Lemmas referenced : 
req_witness, 
int-to-real_wf, 
mconverges-to_wf, 
istype-nat, 
metric_wf, 
istype-universe, 
infinitesmal-difference, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rleq_functionality_wrt_implies, 
mdist_wf, 
imax_wf, 
imax_nat, 
nat_properties, 
decidable__le, 
intformle_wf, 
intformeq_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
istype-le, 
rdiv_wf, 
rless-int, 
rless_wf, 
imax_ub, 
rleq_weakening_equal, 
rleq_weakening, 
le_witness_for_triv, 
nat_plus_wf, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
radd_wf, 
rabs_wf, 
rsub_wf, 
mdist-nonneg, 
mdist-triangle-inequality, 
rleq_functionality, 
rabs_functionality, 
req_weakening, 
rabs-of-nonneg, 
radd_functionality_wrt_rleq, 
radd_functionality, 
mdist-symm, 
rmul_wf, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
rneq-int, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
itermAdd_wf, 
req_transitivity, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rmul-rinv3, 
rinv-as-rdiv, 
real_term_value_add_lemma, 
real_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
dependent_functionElimination, 
functionIsTypeImplies, 
instantiate, 
universeEquality, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
closedConclusion, 
inrFormation_alt, 
inlFormation_alt, 
imageMemberEquality, 
baseClosed, 
baseApply, 
intEquality, 
sqequalBase
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.
        \mforall{}[y1,y2:X].    (y1  \mequiv{}  y2)  supposing  (lim  n\mrightarrow{}\minfty{}.x[n]  =  y1  and  lim  n\mrightarrow{}\minfty{}.x[n]  =  y2)
Date html generated:
2019_10_30-AM-06_39_28
Last ObjectModification:
2019_10_02-AM-10_52_19
Theory : reals
Home
Index