Nuprl Lemma : m-unique-limit

[X:Type]. ∀d:metric(X). ∀x:ℕ ⟶ X.  ∀[y1,y2:X].  (y1 ≡ y2) supposing (lim n→∞.x[n] y1 and lim n→∞.x[n] y2)


Proof




Definitions occuring in Statement :  mconverges-to: lim n→∞.x[n] y meq: x ≡ y metric: metric(X) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a mconverges-to: lim n→∞.x[n] y meq: x ≡ y metric: metric(X) implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop: uiff: uiff(P;Q) and: P ∧ Q nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top sq_exists: x:A [B[x]] rev_uimplies: rev_uimplies(P;Q) nat: guard: {T} ge: i ≥  rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rge: x ≥ y rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B req_int_terms: t1 ≡ t2 mdist: mdist(d;x;y) less_than: a < b squash: T less_than': less_than'(a;b) true: True subtype_rel: A ⊆B rdiv: (x/y)
Lemmas referenced :  req_witness int-to-real_wf mconverges-to_wf istype-nat metric_wf istype-universe infinitesmal-difference nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than rleq_functionality_wrt_implies mdist_wf imax_wf imax_nat nat_properties decidable__le intformle_wf intformeq_wf int_formula_prop_le_lemma int_formula_prop_eq_lemma istype-le rdiv_wf rless-int rless_wf imax_ub rleq_weakening_equal rleq_weakening le_witness_for_triv nat_plus_wf itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma radd_wf rabs_wf rsub_wf mdist-nonneg mdist-triangle-inequality rleq_functionality rabs_functionality req_weakening rabs-of-nonneg radd_functionality_wrt_rleq radd_functionality mdist-symm rmul_wf rinv_wf2 rneq_functionality rmul-int rneq-int set_subtype_base less_than_wf int_subtype_base itermAdd_wf req_transitivity rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul rmul-rinv3 rinv-as-rdiv real_term_value_add_lemma real_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution sqequalRule extract_by_obid isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality independent_functionElimination universeIsType lambdaEquality_alt isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType functionIsType dependent_functionElimination functionIsTypeImplies instantiate universeEquality productElimination independent_isectElimination dependent_set_memberEquality_alt multiplyEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality equalityIstype closedConclusion inrFormation_alt inlFormation_alt imageMemberEquality baseClosed baseApply intEquality sqequalBase

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.
        \mforall{}[y1,y2:X].    (y1  \mequiv{}  y2)  supposing  (lim  n\mrightarrow{}\minfty{}.x[n]  =  y1  and  lim  n\mrightarrow{}\minfty{}.x[n]  =  y2)



Date html generated: 2019_10_30-AM-06_39_28
Last ObjectModification: 2019_10_02-AM-10_52_19

Theory : reals


Home Index