Nuprl Lemma : cauchy-mlimit_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[x:ℕ ⟶ X]. ∀[c:mcauchy(d;n.x n)].
  (cauchy-mlimit(cmplt;x;c) ∈ X)
Proof
Definitions occuring in Statement : 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c)
, 
mcomplete: mcomplete(M)
, 
mcauchy: mcauchy(d;n.x[n])
, 
mk-metric-space: X with d
, 
metric: metric(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c)
, 
subtype_rel: A ⊆r B
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
metric: metric(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
mconverges: x[n]↓ as n→∞
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
Lemmas referenced : 
subtype_rel_self, 
nat_wf, 
mcauchy_wf, 
istype-nat, 
mconverges_wf, 
subtype_rel_function, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality_alt, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[c:mcauchy(d;n.x  n)].
    (cauchy-mlimit(cmplt;x;c)  \mmember{}  X)
Date html generated:
2019_10_30-AM-06_42_51
Last ObjectModification:
2019_10_02-AM-10_55_19
Theory : reals
Home
Index