Nuprl Lemma : cauchy-mlimit_wf

[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[x:ℕ ⟶ X]. ∀[c:mcauchy(d;n.x n)].
  (cauchy-mlimit(cmplt;x;c) ∈ X)


Proof




Definitions occuring in Statement :  cauchy-mlimit: cauchy-mlimit(cmplt;x;c) mcomplete: mcomplete(M) mcauchy: mcauchy(d;n.x[n]) mk-metric-space: with d metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cauchy-mlimit: cauchy-mlimit(cmplt;x;c) subtype_rel: A ⊆B mcomplete: mcomplete(M) mk-metric-space: with d all: x:A. B[x] implies:  Q metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a mconverges: x[n]↓ as n→∞ exists: x:A. B[x] pi1: fst(t)
Lemmas referenced :  subtype_rel_self nat_wf mcauchy_wf istype-nat mconverges_wf subtype_rel_function mcomplete_wf mk-metric-space_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis setElimination rename because_Cache lambdaEquality_alt independent_isectElimination inhabitedIsType lambdaFormation_alt productElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies functionIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[c:mcauchy(d;n.x  n)].
    (cauchy-mlimit(cmplt;x;c)  \mmember{}  X)



Date html generated: 2019_10_30-AM-06_42_51
Last ObjectModification: 2019_10_02-AM-10_55_19

Theory : reals


Home Index