Step
*
2
1
of Lemma
remove-singularity-max
1. X : Type
2. d : metric(X)
3. k : ℕ
4. λi.r0 ∈ ℝ^k
5. f : {p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} ⟶ X
6. z : X
7. ∃c:{c:ℝ| r0 ≤ c}
∀m:ℕ+. ∀p:{p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)} .
((mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
8. cau : ∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)
9. cmplt : mcomplete(X with d)
10. ∀p:ℝ^k. (req-vec(k;p;λi.r0)
⇒ cauchy-mlimit(cmplt;remove-singularity-max-seq(k;p;f;z);cau) ≡ z)
11. p : {p:ℝ^k| r0 < mdist(max-metric(k);p;λi.r0)}
12. r0 < mdist(max-metric(k);p;λi.r0)
13. (r0 < mdist(max-metric(k);p;λi.r0))
⇐ ∃n:ℕ. ((realvec-max-ibs(k;p) n) = 1 ∈ ℤ)
14. ∀n:ℕ. (((realvec-max-ibs(k;p) n) = 0 ∈ ℤ)
⇒ (mdist(max-metric(k);p;λi.r0) ≤ (r(4)/r(n + 1))))
15. n : ℕ
16. (realvec-max-ibs(k;p) n) = 1 ∈ ℤ
17. ∀[n@0:ℕ]. (realvec-max-ibs(k;p) n@0) = 1 ∈ ℤ supposing n ≤ n@0
18. k@0 : ℕ+
19. n@0 : ℕ
20. n ≤ n@0
⊢ mdist(d;remove-singularity-max-seq(k;p;f;z) n@0;f p) ≤ (r1/r(k@0))
BY
{ (RepUR ``remove-singularity-max-seq`` 0
THEN (RWO "-4" 0 THENA Auto)
THEN Reduce 0
THEN RWO "mdist-same" 0
THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. \mlambda{}i.r0 \mmember{} \mBbbR{}\^{}k
5. f : \{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} {}\mrightarrow{} X
6. z : X
7. \mexists{}c:\{c:\mBbbR{}| r0 \mleq{} c\}
\mforall{}m:\mBbbN{}\msupplus{}. \mforall{}p:\{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\} .
((mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(m))) {}\mRightarrow{} (mdist(d;f p;z) \mleq{} (c/r(m))))
8. cau : \mforall{}[p:\mBbbR{}\^{}k]. mcauchy(d;n.remove-singularity-max-seq(k;p;f;z) n)
9. cmplt : mcomplete(X with d)
10. \mforall{}p:\mBbbR{}\^{}k. (req-vec(k;p;\mlambda{}i.r0) {}\mRightarrow{} cauchy-mlimit(cmplt;remove-singularity-max-seq(k;p;f;z);cau) \mequiv{} z)
11. p : \{p:\mBbbR{}\^{}k| r0 < mdist(max-metric(k);p;\mlambda{}i.r0)\}
12. r0 < mdist(max-metric(k);p;\mlambda{}i.r0)
13. (r0 < mdist(max-metric(k);p;\mlambda{}i.r0)) \mLeftarrow{}{} \mexists{}n:\mBbbN{}. ((realvec-max-ibs(k;p) n) = 1)
14. \mforall{}n:\mBbbN{}. (((realvec-max-ibs(k;p) n) = 0) {}\mRightarrow{} (mdist(max-metric(k);p;\mlambda{}i.r0) \mleq{} (r(4)/r(n + 1))))
15. n : \mBbbN{}
16. (realvec-max-ibs(k;p) n) = 1
17. \mforall{}[n@0:\mBbbN{}]. (realvec-max-ibs(k;p) n@0) = 1 supposing n \mleq{} n@0
18. k@0 : \mBbbN{}\msupplus{}
19. n@0 : \mBbbN{}
20. n \mleq{} n@0
\mvdash{} mdist(d;remove-singularity-max-seq(k;p;f;z) n@0;f p) \mleq{} (r1/r(k@0))
By
Latex:
(RepUR ``remove-singularity-max-seq`` 0
THEN (RWO "-4" 0 THENA Auto)
THEN Reduce 0
THEN RWO "mdist-same" 0
THEN Auto)
Home
Index