Step
*
1
2
2
of Lemma
remove-singularity-seq-mcauchy
1. X : Type
2. d : metric(X)
3. k : ℕ
4. f : {p:ℝ^k| r0 < ||p||} ⟶ X
5. z : X
6. c : {c:ℝ| r0 ≤ c}
7. ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} . ((||p|| ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
8. p : ℝ^k
9. b : ℕ+
10. N : ℕ+
11. (c/r(N)) ≤ (r1/r(b))
12. n : ℕ
13. realvec-ibs(k;p) n ≠ 1
14. m : ℕ
15. N ≤ n
16. N ≤ m
17. r0 < ||p||
⇐⇒ ∃n:ℕ. ((realvec-ibs(k;p) n) = 1 ∈ ℤ)
18. ∀n:ℕ. (((realvec-ibs(k;p) n) = 0 ∈ ℤ)
⇒ (||p|| ≤ (r(4)/r(n + 1))))
19. (realvec-ibs(k;p) m) = 1 ∈ ℤ
20. r0 < ||p||
⊢ mdist(d;z;f p) ≤ (r1/r(b))
BY
{ (InstHyp [⌜n⌝] (-3)⋅ THENA (Auto THEN MoveToConcl 13 THEN GenConclTerm ⌜realvec-ibs(k;p) n⌝⋅ THEN Auto)) }
1
1. X : Type
2. d : metric(X)
3. k : ℕ
4. f : {p:ℝ^k| r0 < ||p||} ⟶ X
5. z : X
6. c : {c:ℝ| r0 ≤ c}
7. ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} . ((||p|| ≤ (r(4)/r(m)))
⇒ (mdist(d;f p;z) ≤ (c/r(m))))
8. p : ℝ^k
9. b : ℕ+
10. N : ℕ+
11. (c/r(N)) ≤ (r1/r(b))
12. n : ℕ
13. realvec-ibs(k;p) n ≠ 1
14. m : ℕ
15. N ≤ n
16. N ≤ m
17. r0 < ||p||
⇐⇒ ∃n:ℕ. ((realvec-ibs(k;p) n) = 1 ∈ ℤ)
18. ∀n:ℕ. (((realvec-ibs(k;p) n) = 0 ∈ ℤ)
⇒ (||p|| ≤ (r(4)/r(n + 1))))
19. (realvec-ibs(k;p) m) = 1 ∈ ℤ
20. r0 < ||p||
21. ||p|| ≤ (r(4)/r(n + 1))
⊢ mdist(d;z;f p) ≤ (r1/r(b))
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. f : \{p:\mBbbR{}\^{}k| r0 < ||p||\} {}\mrightarrow{} X
5. z : X
6. c : \{c:\mBbbR{}| r0 \mleq{} c\}
7. \mforall{}m:\mBbbN{}\msupplus{}. \mforall{}p:\{p:\mBbbR{}\^{}k| r0 < ||p||\} . ((||p|| \mleq{} (r(4)/r(m))) {}\mRightarrow{} (mdist(d;f p;z) \mleq{} (c/r(m))))
8. p : \mBbbR{}\^{}k
9. b : \mBbbN{}\msupplus{}
10. N : \mBbbN{}\msupplus{}
11. (c/r(N)) \mleq{} (r1/r(b))
12. n : \mBbbN{}
13. realvec-ibs(k;p) n \mneq{} 1
14. m : \mBbbN{}
15. N \mleq{} n
16. N \mleq{} m
17. r0 < ||p|| \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. ((realvec-ibs(k;p) n) = 1)
18. \mforall{}n:\mBbbN{}. (((realvec-ibs(k;p) n) = 0) {}\mRightarrow{} (||p|| \mleq{} (r(4)/r(n + 1))))
19. (realvec-ibs(k;p) m) = 1
20. r0 < ||p||
\mvdash{} mdist(d;z;f p) \mleq{} (r1/r(b))
By
Latex:
(InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-3)\mcdot{}
THENA (Auto THEN MoveToConcl 13 THEN GenConclTerm \mkleeneopen{}realvec-ibs(k;p) n\mkleeneclose{}\mcdot{} THEN Auto)
)
Home
Index