Nuprl Lemma : remove-singularity-seq-mcauchy

[X:Type]. ∀[d:metric(X)]. ∀[k:ℕ]. ∀[f:{p:ℝ^k| r0 < ||p||}  ⟶ X]. ∀[z:X].
  ((∃c:{c:ℝr0 ≤ c} . ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} .  ((||p|| ≤ (r(4)/r(m)))  (mdist(d;f p;z) ≤ (c/r(m)))))
   (∀[p:ℝ^k]. mcauchy(d;n.remove-singularity-seq(k;p;f;z) n)))


Proof




Definitions occuring in Statement :  remove-singularity-seq: remove-singularity-seq(k;p;f;z) real-vec-norm: ||x|| real-vec: ^n mcauchy: mcauchy(d;n.x[n]) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q mcauchy: mcauchy(d;n.x[n]) all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q nat: ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top sq_type: SQType(T) rless: x < y sq_exists: x:A [B[x]] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  rdiv: (x/y) req_int_terms: t1 ≡ t2 remove-singularity-seq: remove-singularity-seq(k;p;f;z) bool: 𝔹 unit: Unit it: btrue: tt incr-binary-seq: IBS int_seg: {i..j-} ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T rge: x ≥ y real: sq_stable: SqStable(P)
Lemmas referenced :  nat_plus_wf real-vec_wf real_wf rleq_wf int-to-real_wf rless_wf real-vec-norm_wf rdiv_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf mdist_wf istype-nat metric_wf istype-universe r-archimedean decidable__equal_int subtype_base_sq int_subtype_base r-archimedean-implies2 rless-int-fractions2 itermMultiply_wf int_term_value_mul_lemma rneq-int intformeq_wf int_formula_prop_eq_lemma set_subtype_base less_than_wf mul_nat_plus intformle_wf int_formula_prop_le_lemma istype-less_than rmul_preserves_rleq mul_bounds_1b rmul_wf rinv_wf2 rneq_functionality rmul-int req_weakening int_entire_a itermSubtract_wf rleq_functionality req_transitivity rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma nat_plus_subtype_nat realvec-ibs-property eq_int_wf realvec-ibs_wf eqtt_to_assert assert_of_eq_int int_seg_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int lelt_wf istype-le remove-singularity-seq_wf rleq-int-fractions2 decidable__le mdist-same int_seg_properties nequal_wf itermAdd_wf int_term_value_add_lemma rleq_functionality_wrt_implies rleq_weakening_equal rleq-int-fractions sq_stable__less_than rmul_preserves_rleq2 sq_stable__rleq rinv-mul-as-rdiv mdist-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin rename universeIsType cut introduction extract_by_obid hypothesis isectElimination hypothesisEquality sqequalRule productIsType setIsType natural_numberEquality functionIsType setElimination closedConclusion because_Cache independent_isectElimination inrFormation_alt dependent_functionElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality instantiate universeEquality cumulativity intEquality equalityTransitivity equalitySymmetry multiplyEquality dependent_set_memberEquality_alt equalityIstype inhabitedIsType baseClosed sqequalBase equalityElimination promote_hyp applyLambdaEquality imageElimination addEquality imageMemberEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[k:\mBbbN{}].  \mforall{}[f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X].  \mforall{}[z:X].
    ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
          \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .    ((||p||  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
    {}\mRightarrow{}  (\mforall{}[p:\mBbbR{}\^{}k].  mcauchy(d;n.remove-singularity-seq(k;p;f;z)  n)))



Date html generated: 2019_10_30-AM-10_16_23
Last ObjectModification: 2019_06_28-PM-01_55_57

Theory : real!vectors


Home Index