Nuprl Lemma : realvec-ibs-property

k:ℕ. ∀p:ℝ^k.
  ((r0 < ||p|| ⇐⇒ ∃n:ℕ((realvec-ibs(k;p) n) 1 ∈ ℤ))
  ∧ (∀n:ℕ(((realvec-ibs(k;p) n) 0 ∈ ℤ (||p|| ≤ (r(4)/r(n 1))))))


Proof




Definitions occuring in Statement :  realvec-ibs: realvec-ibs(n;p) real-vec-norm: ||x|| real-vec: ^n rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T realvec-ibs: realvec-ibs(n;p) and: P ∧ Q implies:  Q or: P ∨ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a false: False nat: rneq: x ≠ y rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B incr-binary-seq: IBS int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  real-vec-norm-nonneg rless_ibs_property int-to-real_wf rless_transitivity1 real-vec-norm_wf rless_irreflexivity req_inversion rleq_transitivity rdiv_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf rleq_weakening rless_ibs_wf set_subtype_base lelt_wf int_subtype_base real-vec_wf istype-nat rabs_wf rsub_wf rminus_wf itermSubtract_wf itermMinus_wf req_wf squash_wf true_wf real_wf rabs-rminus rabs-of-nonneg subtype_rel_self iff_weakening_equal req_functionality rabs_functionality req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination natural_numberEquality because_Cache independent_pairFormation productElimination promote_hyp independent_functionElimination unionElimination independent_isectElimination voidElimination closedConclusion addEquality setElimination rename sqequalRule inrFormation_alt equalityTransitivity equalitySymmetry approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt universeIsType equalityIstype applyEquality inhabitedIsType intEquality baseClosed sqequalBase imageElimination imageMemberEquality instantiate universeEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}p:\mBbbR{}\^{}k.
    ((r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((realvec-ibs(k;p)  n)  =  1))
    \mwedge{}  (\mforall{}n:\mBbbN{}.  (((realvec-ibs(k;p)  n)  =  0)  {}\mRightarrow{}  (||p||  \mleq{}  (r(4)/r(n  +  1))))))



Date html generated: 2019_10_30-AM-10_16_06
Last ObjectModification: 2019_06_28-PM-01_55_51

Theory : real!vectors


Home Index