Nuprl Lemma : remove-singularity-seq_wf
∀[X:Type]. ∀[k:ℕ]. ∀[p:ℝ^k]. ∀[f:{p:ℝ^k| r0 < ||p||}  ⟶ X]. ∀[z:X].  (remove-singularity-seq(k;p;f;z) ∈ ℕ ⟶ X)
Proof
Definitions occuring in Statement : 
remove-singularity-seq: remove-singularity-seq(k;p;f;z)
, 
real-vec-norm: ||x||
, 
real-vec: ℝ^n
, 
rless: x < y
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
remove-singularity-seq: remove-singularity-seq(k;p;f;z)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
bfalse: ff
Lemmas referenced : 
realvec-ibs_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
realvec-ibs-property, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
rless_wf, 
int-to-real_wf, 
real-vec-norm_wf, 
real-vec_wf, 
istype-nat, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
closedConclusion, 
natural_numberEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
baseClosed, 
sqequalBase, 
dependent_set_memberEquality_alt, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
setIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X].  \mforall{}[z:X].
    (remove-singularity-seq(k;p;f;z)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  X)
Date html generated:
2019_10_30-AM-10_16_18
Last ObjectModification:
2019_06_28-PM-01_55_55
Theory : real!vectors
Home
Index