Nuprl Lemma : req-cube_wf
∀[k,k:ℕ]. ∀[c1,c2:real-cube(k)].  (req-cube(k;c1;c2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
req-cube: req-cube(k;c1;c2)
, 
real-cube: real-cube(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req-cube: req-cube(k;c1;c2)
, 
prop: ℙ
, 
and: P ∧ Q
, 
real-cube: real-cube(k)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
req-vec_wf, 
real-cube_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[k,k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (req-cube(k;c1;c2)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-11_31_04
Last ObjectModification:
2019_09_27-PM-01_23_41
Theory : real!vectors
Home
Index