Nuprl Lemma : req-cube_wf

[k,k:ℕ]. ∀[c1,c2:real-cube(k)].  (req-cube(k;c1;c2) ∈ ℙ)


Proof




Definitions occuring in Statement :  req-cube: req-cube(k;c1;c2) real-cube: real-cube(k) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T req-cube: req-cube(k;c1;c2) prop: and: P ∧ Q real-cube: real-cube(k) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  req-vec_wf real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[k,k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (req-cube(k;c1;c2)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_31_04
Last ObjectModification: 2019_09_27-PM-01_23_41

Theory : real!vectors


Home Index