Step
*
2
of Lemma
sphere-map-from-ball-map
1. n : ℕ
2. g : {g:B(n + 1) ⟶ B(n + 1)|
(∀x,y:B(n + 1). (req-vec(n + 1;x;y)
⇒ req-vec(n + 1;g x;g y))) ∧ (∀x:B(n + 1). (||g x|| = r1))}
3. k : ℕ+
⊢ ∃d:ℕ+. ∀p,q:S(n). ((d(p;q) ≤ (r1/r(d)))
⇒ (d(g p;g q) ≤ (r1/r(k))))
BY
{ ((InstLemma `real-ball-uniform-continuity` [⌜n + 1⌝;⌜n + 1⌝;⌜g⌝;⌜(r1/r(k))⌝]⋅ THENA Auto)
THEN RepeatFor 3 (ParallelLast)
) }
Latex:
Latex:
1. n : \mBbbN{}
2. g : \{g:B(n + 1) {}\mrightarrow{} B(n + 1)|
(\mforall{}x,y:B(n + 1). (req-vec(n + 1;x;y) {}\mRightarrow{} req-vec(n + 1;g x;g y)))
\mwedge{} (\mforall{}x:B(n + 1). (||g x|| = r1))\}
3. k : \mBbbN{}\msupplus{}
\mvdash{} \mexists{}d:\mBbbN{}\msupplus{}. \mforall{}p,q:S(n). ((d(p;q) \mleq{} (r1/r(d))) {}\mRightarrow{} (d(g p;g q) \mleq{} (r1/r(k))))
By
Latex:
((InstLemma `real-ball-uniform-continuity` [\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}(r1/r(k))\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RepeatFor 3 (ParallelLast)
)
Home
Index