Nuprl Lemma : sphere-map-from-ball-map

[n:ℕ]. ∀[g:{g:B(n 1) ⟶ B(n 1)| 
             (∀x,y:B(n 1).  (req-vec(n 1;x;y)  req-vec(n 1;g x;g y))) ∧ (∀x:B(n 1). (||g x|| r1))} ].
  (g ∈ sphere-map(n))


Proof




Definitions occuring in Statement :  sphere-map: sphere-map(n) real-unit-ball: B(n) real-vec-norm: ||x|| req-vec: req-vec(n;x;y) req: y int-to-real: r(n) nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sphere-map: sphere-map(n) all: x:A. B[x] exists: x:A. B[x] implies:  Q nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: real-unit-sphere: S(n) subtype_rel: A ⊆B rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q real-unit-ball: B(n) so_lambda: λ2x.t[x] so_apply: x[s] real-ball: B(n;r) cand: c∧ B rless: x < y sq_exists: x:A [B[x]]
Lemmas referenced :  nat_plus_wf real-unit-sphere_wf rleq_wf real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf real-unit-ball_wf req-vec_wf req_wf real-vec-norm_wf istype-nat real-unit-sphere-subtype-ball real-ball-uniform-continuity istype-less_than subtype_rel_sets real-ball_wf real-vec_wf all_wf subtype_rel_set subtype_rel_dep_function subtype_rel_self rless-int-fractions2 itermMultiply_wf int_term_value_mul_lemma subtype_rel_sets_simple rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaFormation_alt universeIsType extract_by_obid hypothesis sqequalRule functionIsType because_Cache productIsType sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality closedConclusion inrFormation_alt productElimination axiomEquality equalityTransitivity equalitySymmetry setIsType isectIsTypeImplies inhabitedIsType functionExtensionality functionEquality productEquality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[g:\{g:B(n  +  1)  {}\mrightarrow{}  B(n  +  1)| 
                          (\mforall{}x,y:B(n  +  1).    (req-vec(n  +  1;x;y)  {}\mRightarrow{}  req-vec(n  +  1;g  x;g  y)))
                          \mwedge{}  (\mforall{}x:B(n  +  1).  (||g  x||  =  r1))\}  ].
    (g  \mmember{}  sphere-map(n))



Date html generated: 2019_10_30-AM-11_27_55
Last ObjectModification: 2019_07_30-PM-02_38_53

Theory : real!vectors


Home Index