Nuprl Lemma : real-unit-sphere_wf

[n:ℕ]. (S(n) ∈ Type)


Proof




Definitions occuring in Statement :  real-unit-sphere: S(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-unit-sphere: S(n) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  real-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le req_wf real-vec-norm_wf int-to-real_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (S(n)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-10_15_16
Last ObjectModification: 2019_07_30-AM-09_20_53

Theory : real!vectors


Home Index