Nuprl Lemma : real-ball-uniform-continuity

k:ℕ. ∀n:ℕ+. ∀f:{f:B(n;r1) ⟶ ℝ^k| ∀x,y:B(n;r1).  (req-vec(n;x;y)  req-vec(k;f x;f y))} . ∀e:{e:ℝr0 < e} .
  ∃d:ℕ+. ∀x,y:B(n;r1).  ((d(x;y) ≤ (r1/r(d)))  (d(f x;f y) ≤ e))


Proof




Definitions occuring in Statement :  real-ball: B(n;r) real-vec-dist: d(x;y) req-vec: req-vec(n;x;y) real-vec: ^n rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T homeomorphic+: homeomorphic+(X;dX;Y;dY) exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: iproper: iproper(I) top: Top less_than: a < b squash: T true: True subtype_rel: A ⊆B nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) real-ball: B(n;r) mfun: FUN(X ⟶ Y) compose: g uiff: uiff(P;Q) is-mfun: f:FUN(X;Y) so_apply: x[s] meq: x ≡ y real-vec-dist: d(x;y) real-vec-norm: ||x|| rsqrt: rsqrt(x) rroot: rroot(i;x) ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m btrue: tt rroot-abs: rroot-abs(i;x) fastexp: i^n efficient-exp-ext genrec: genrec subtract: m rn-metric: rn-metric(n) interval-vec: I^n mdist: mdist(d;x;y) rneq: x ≠ y guard: {T} metric-leq: d1 ≤ d2 scale-metric: c*d rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2 rdiv: (x/y) sq_stable: SqStable(P)
Lemmas referenced :  unit-balls-homeomorphic+-2 interval-cube-uniform-continuity rccint-icompact int-to-real_wf rleq-int istype-false rccint_wf icompact_wf left_endpoint_rccint_lemma istype-void right_endpoint_rccint_lemma rless-int i-finite_wf nat_plus_subtype_nat real_wf rless_wf real-ball_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le real-vec_wf req-vec_wf nat_plus_wf istype-nat compose_wf interval-vec_wf meq-max-metric real-vec-dist-identity mul_nat_plus rleq_wf real-vec-dist_wf rdiv_wf multiply_nat_plus decidable__lt itermMultiply_wf intformeq_wf int_term_value_mul_lemma int_formula_prop_eq_lemma rn-metric-leq-max-metric rmul_wf mdist_wf max-metric_wf metric-on-subtype rleq_functionality_wrt_implies rleq_weakening_equal rmul_preserves_rleq2 itermSubtract_wf rleq_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rmul_preserves_rleq rinv_wf2 req_transitivity rmul-rinv req_weakening req_functionality rmul_functionality req_inversion rmul-int sq_stable__rleq rleq_weakening real-vec-dist_functionality rn-metric-meq req-vec_weakening req-vec_functionality efficient-exp-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination minusEquality natural_numberEquality hypothesis independent_functionElimination sqequalRule independent_pairFormation because_Cache dependent_set_memberEquality_alt universeIsType isect_memberEquality_alt voidElimination imageMemberEquality baseClosed applyEquality setIsType functionIsType setElimination rename unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality inhabitedIsType equalityTransitivity equalitySymmetry closedConclusion multiplyEquality inrFormation_alt applyLambdaEquality equalityIstype promote_hyp imageElimination

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\{f:B(n;r1)  {}\mrightarrow{}  \mBbbR{}\^{}k|  \mforall{}x,y:B(n;r1).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .
\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:B(n;r1).    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))



Date html generated: 2019_10_30-AM-11_27_05
Last ObjectModification: 2019_07_08-PM-05_42_26

Theory : real!vectors


Home Index