Nuprl Lemma : req-vec_functionality

[n:ℕ]. ∀[x1,x2,y1,y2:ℝ^n].  (uiff(req-vec(n;x1;y1);req-vec(n;x2;y2))) supposing (req-vec(n;y1;y2) and req-vec(n;x1;x2))


Proof




Definitions occuring in Statement :  req-vec: req-vec(n;x;y) real-vec: ^n nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  req-vec: req-vec(n;x;y) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] nat: implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness all_wf req_wf real_wf nat_wf req_weakening req_functionality req_transitivity req_inversion
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality functionExtensionality because_Cache independent_functionElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x1,x2,y1,y2:\mBbbR{}\^{}n].
    (uiff(req-vec(n;x1;y1);req-vec(n;x2;y2)))  supposing  (req-vec(n;y1;y2)  and  req-vec(n;x1;x2))



Date html generated: 2016_10_26-AM-10_14_30
Last ObjectModification: 2016_09_24-PM-09_49_18

Theory : reals


Home Index