Nuprl Lemma : unit-balls-homeomorphic+-2
∀n:ℕ+. homeomorphic+(B(n;r1);rn-metric(n);[r(-1), r1]^n;max-metric(n))
Proof
Definitions occuring in Statement : 
real-ball: B(n;r)
, 
max-metric: max-metric(n)
, 
rn-metric: rn-metric(n)
, 
interval-vec: I^n
, 
homeomorphic+: homeomorphic+(X;dX;Y;dY)
, 
rccint: [l, u]
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
mfun: FUN(X ⟶ Y)
, 
is-mfun: f:FUN(X;Y)
, 
homeomorphic+: homeomorphic+(X;dX;Y;dY)
, 
mdist: mdist(d;x;y)
, 
rn-metric: rn-metric(n)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
interval-vec: I^n
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
guard: {T}
, 
real-ball: B(n;r)
, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
Lemmas referenced : 
mfun_wf, 
rmul_wf, 
meq_wf, 
is-mfun_wf, 
metric-on-subtype, 
unit-balls-homeomorphic+, 
req_weakening, 
mdist-symm, 
req_functionality, 
real-vec-dist-from-zero, 
nat_plus_wf, 
interval-vec_wf, 
max-metric_wf, 
rccint_wf, 
i-member_wf, 
iff_weakening_equal, 
subtype_rel_self, 
rminus-int, 
real_wf, 
true_wf, 
squash_wf, 
member_rccint_lemma, 
nat_plus_subtype_nat, 
istype-false, 
rleq-int, 
max-metric-mdist-from-zero-2, 
real-ball_wf, 
rleq_wf, 
rleq_weakening, 
rleq_transitivity, 
real-vec-norm_wf, 
rn-metric_wf, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
real-vec_wf, 
mdist_wf, 
req_inversion, 
int_seg_wf, 
int-to-real_wf
Rules used in proof : 
setEquality, 
productIsType, 
functionExtensionality, 
closedConclusion, 
minusEquality, 
functionIsType, 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
inhabitedIsType, 
setIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
hypothesisEquality, 
natural_numberEquality, 
universeIsType, 
hypothesis, 
productElimination, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
lambdaEquality_alt, 
sqequalRule, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  homeomorphic+(B(n;r1);rn-metric(n);[r(-1),  r1]\^{}n;max-metric(n))
Date html generated:
2019_10_30-AM-11_26_26
Last ObjectModification:
2019_10_29-PM-01_06_58
Theory : real!vectors
Home
Index