Nuprl Lemma : unit-balls-homeomorphic+-2

n:ℕ+homeomorphic+(B(n;r1);rn-metric(n);[r(-1), r1]^n;max-metric(n))


Proof




Definitions occuring in Statement :  real-ball: B(n;r) max-metric: max-metric(n) rn-metric: rn-metric(n) interval-vec: I^n homeomorphic+: homeomorphic+(X;dX;Y;dY) rccint: [l, u] int-to-real: r(n) nat_plus: + all: x:A. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) homeomorphic+: homeomorphic+(X;dX;Y;dY) mdist: mdist(d;x;y) rn-metric: rn-metric(n) rev_uimplies: rev_uimplies(P;Q) true: True squash: T cand: c∧ B uiff: uiff(P;Q) less_than': less_than'(a;b) rev_implies:  Q iff: ⇐⇒ Q interval-vec: I^n prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: guard: {T} real-ball: B(n;r) subtype_rel: A ⊆B ext-eq: A ≡ B nat_plus: + le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T real-vec: ^n all: x:A. B[x]
Lemmas referenced :  mfun_wf rmul_wf meq_wf is-mfun_wf metric-on-subtype unit-balls-homeomorphic+ req_weakening mdist-symm req_functionality real-vec-dist-from-zero nat_plus_wf interval-vec_wf max-metric_wf rccint_wf i-member_wf iff_weakening_equal subtype_rel_self rminus-int real_wf true_wf squash_wf member_rccint_lemma nat_plus_subtype_nat istype-false rleq-int max-metric-mdist-from-zero-2 real-ball_wf rleq_wf rleq_weakening rleq_transitivity real-vec-norm_wf rn-metric_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties real-vec_wf mdist_wf req_inversion int_seg_wf int-to-real_wf
Rules used in proof :  setEquality productIsType functionExtensionality closedConclusion minusEquality functionIsType universeEquality instantiate baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination applyEquality inhabitedIsType setIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination because_Cache dependent_set_memberEquality_alt independent_pairFormation hypothesisEquality natural_numberEquality universeIsType hypothesis productElimination rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction lambdaEquality_alt sqequalRule cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  homeomorphic+(B(n;r1);rn-metric(n);[r(-1),  r1]\^{}n;max-metric(n))



Date html generated: 2019_10_30-AM-11_26_26
Last ObjectModification: 2019_10_29-PM-01_06_58

Theory : real!vectors


Home Index