Nuprl Lemma : max-metric-mdist-from-zero-2

[c:{c:ℝr0 ≤ c} ]. ∀[n:ℕ]. ∀[x:ℝ^n].  uiff(mdist(max-metric(n);λi.r0;x) ≤ c;∀i:ℕn. (x i ∈ [-(c), c]))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rminus: -(x) int-to-real: r(n) real: int_seg: {i..j-} nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] real-vec: ^n member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: prop: uiff: uiff(P;Q) uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] rev_implies:  Q implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  int-to-real_wf int_seg_wf real-vec_wf istype-nat real_wf rleq_wf le_witness_for_triv mdist_wf max-metric_wf iff_weakening_uiff i-member_wf rccint_wf rminus_wf max-metric-mdist-from-zero rleq_functionality mdist-symm req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule lambdaEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis universeIsType natural_numberEquality hypothesisEquality setIsType independent_pairFormation dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType because_Cache functionEquality applyEquality independent_functionElimination promote_hyp functionIsType

Latex:
\mforall{}[c:\{c:\mBbbR{}|  r0  \mleq{}  c\}  ].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].
    uiff(mdist(max-metric(n);\mlambda{}i.r0;x)  \mleq{}  c;\mforall{}i:\mBbbN{}n.  (x  i  \mmember{}  [-(c),  c]))



Date html generated: 2019_10_30-AM-08_36_21
Last ObjectModification: 2019_10_02-AM-11_02_18

Theory : reals


Home Index