Nuprl Lemma : max-metric-mdist-from-zero-2
∀[c:{c:ℝ| r0 ≤ c} ]. ∀[n:ℕ]. ∀[x:ℝ^n].  uiff(mdist(max-metric(n);λi.r0;x) ≤ c;∀i:ℕn. (x i ∈ [-(c), c]))
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n)
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
real-vec: ℝ^n
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
int-to-real_wf, 
int_seg_wf, 
real-vec_wf, 
istype-nat, 
real_wf, 
rleq_wf, 
le_witness_for_triv, 
mdist_wf, 
max-metric_wf, 
iff_weakening_uiff, 
i-member_wf, 
rccint_wf, 
rminus_wf, 
max-metric-mdist-from-zero, 
rleq_functionality, 
mdist-symm, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
hypothesisEquality, 
setIsType, 
independent_pairFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
functionEquality, 
applyEquality, 
independent_functionElimination, 
promote_hyp, 
functionIsType
Latex:
\mforall{}[c:\{c:\mBbbR{}|  r0  \mleq{}  c\}  ].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].
    uiff(mdist(max-metric(n);\mlambda{}i.r0;x)  \mleq{}  c;\mforall{}i:\mBbbN{}n.  (x  i  \mmember{}  [-(c),  c]))
Date html generated:
2019_10_30-AM-08_36_21
Last ObjectModification:
2019_10_02-AM-11_02_18
Theory : reals
Home
Index